Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 457: 131822, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37315413

RESUMEN

The ocean reserves nearly four billion tons of uranium, providing an inexhaustible supply of nuclear energy if the limits of ultralow U(VI) concentration (3.3 µg·L-1) are addressed. Membrane technology is promising to make this happen by simultaneous U(VI) concentration and extraction. Herein, we report a pioneering adsorption-pervaporation membrane for efficient enrichment and capture of U(VI) along with clean water production. A bifunctional poly(dopamine-ethylenediamine) and graphene oxide 2D scaffold membrane was developed and further crosslinked by glutaraldehyde, capable of recovering over 70% U(VI) and water from simulated seawater brine, which validates the feasibility of one-step water recovery, brine concentration, and uranium extraction from seawater brine. Moreover, compared with other membranes and adsorbents, this membrane exhibits fast pervaporation desalination (flux: 153.3 kg·m-2·h-1, rejection: >99.99%) and excellent uranium capture properties of 228.6 mg·m-2 benefiting from plentiful functional groups provided by embedded poly(dopamine-ethylenediamine). This study aims to provide a strategy for recovering critical elements from the ocean.

2.
Membranes (Basel) ; 12(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35448350

RESUMEN

As an attractive way to deal with fresh water shortage, membrane-based desalination technologies are receiving increased interest. However, concentrated seawater brine, in needing further treatment, remains a main obstacle for desalination via membrane technology. Here, a hybrid technology integrating pressure-retarded osmosis with activated sludge process (PRO-MBR) was applied for simultaneously treating concentrated seawater brine and municipal wastewater. Performance of the PRO-MBR, including water flux, power density, contaminants removal, and membrane fouling was evaluated and compared at two different membrane orientations (i.e., active layer facing feed solution (AL-FS) mode and active layer facing draw solution (AL-DS) mode). During the PRO-MBR process, the municipal wastewater was completely treated regardless of the membrane orientation, which means that there was no concentrated sewage needing further treatment, owing to the biodegradation of microorganisms in the bioreactor. In the meantime, the concentrated brine of seawater desalination was diluted into the salinity level of seawater, which met the standard of seawater discharge. Owing to the high rejection of forward osmosis (FO) membrane, the removal efficiency of total organic carbon (TOC), total phosphorus (TP), ammonia nitrogen (NH4+-N), and total nitrogen (TN) was higher than 90% at both modes in the PRO-MBR. In addition, the PRO-MBR can simultaneously recover the existing osmotic energy between the municipal wastewater and the seawater brine at both modes. Compared with the AL-DS mode, the AL-FS mode took a shorter time and achieved a bigger power density to reach the same terminal point of the PRO-MBR owing to a better water flux performance. Furthermore, the membrane fouling was much more severe in the AL-DS mode. In conclusion, the current study demonstrated that the PRO-MBR at the AL-FS mode can be a promising and sustainable brine concentrate and municipal wastewater treatment technology for its simultaneous energy and water recovery.

3.
Water Res ; 201: 117335, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34175727

RESUMEN

Sustainable seawater brine treatment demands an essential paradigm shift for effective recovery of resources and high value utilization of mixed-salts. Here, a novel hybrid electrodialysis (ED) system was proposed that integrated an innovative hybrid selective ED (HSED) and a developed selective bipolar membrane ED (SBMED). The HSED process allowed simultaneous recovery of major divalent cations and anions from seawater brine when NaCl was selectively enriched. Then, the impure NaCl-rich stream was fed directly into the SBMED process for acid/base preparation without any purification pretreatment. Detailed analysis of the HSED process showed that increasing unit voltage from 2.33 V to 2.67 V would improve the removal ratio of Ca2+, Mg2+ and SO42- from 54.7%, 41.4% and 13.3% to 78.9%, 76.6% and 32.1%, respectively. In addition, the increment of initial concentration of product streams promoted the transport of various ions from the feed and middle compartments. The fine utilization performance, in terms of ionic removal ratio and fractionation ratio of divalent ions in the HSED process, was more limited by the initial concentration of product streams. Furthermore, the SBMED stack was found to have nearly identical performance over five cycles, indicating that the presence of a trace amount of hardness cations did not induce scaling. The current study thus provided a novel suitable strategy with a perspective of fine utilization for practical applications in sustainable disposal of seawater brine.


Asunto(s)
Sales (Química) , Purificación del Agua , Cationes , Agua de Mar
4.
Chemosphere ; 238: 124641, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31466001

RESUMEN

Seawater reverse osmosis (SWRO) brine contain many valuable resources. In this study, fractional-submerged membrane distillation crystallizer (F-SMDC) was used to recover sodium sulfate (Na2SO4) from SWRO brine. The concentration/temperature gradient (CG/TG) in the reactor enhanced water recovery utilizing MD and Na2SO4 crystallization via a crystallizer. Crystals were not obtained at the bottom section of the F-SMDC due to: firstly, calcium sulfate crystallization occurring on the membrane surface; and secondly, low temperature-sensitivity solubility component such as NaCl exerting a negative influence. In order to obtain supersaturation, a sulfate-rich scenario was created in the reactor through the addition of the following three components: Na2SO4, MgSO4 and (NH4)2SO4. When Na2SO4 and MgSO4 were added, a larger concentration was observed at the top section, resulting in a low concentration gradient (CG) ratio, i.e. around 1.7. Conversely, the addition of (NH4)2SO4 achieved faster Na2SO4 crystallization (VCF 1.42) at the bottom section with a greater CG ratio of more than 2.0. Total water recovery ratio of 72% and 223.73 g Na2SO4 crystals were successfully extracted from simulated SWRO brine using laboratory scale F-SMDC.


Asunto(s)
Destilación/métodos , Sales (Química)/química , Sulfatos/aislamiento & purificación , Cristalización , Membranas Artificiales , Ósmosis , Agua de Mar/química , Solubilidad , Temperatura
5.
Water Res ; 123: 321-331, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28675845

RESUMEN

The ultimate goal of seawater reverse osmosis (SWRO) brine management is to achieve minimal liquid discharge while recovering valuable resources. The suitability of an integrated system of membrane distillation (MD) with sorption for the recovery of rubidium (Rb+) and simultaneous SWRO brine volume reduction has been evaluated for the first time. Polymer encapsulated potassium copper hexacyanoferrate (KCuFC(PAN)) sorbent exhibited a good selectivity for Rb+ sorption with 10-15% increment at 55 °C (Langmuir Qmax = 125.11 ± 0.20 mg/g) compared to at 25 °C (Langmuir Qmax = 108.71 ± 0.20 mg/g). The integrated MD-KCuFC(PAN) system with periodic membrane cleaning, enabled concentration of SWRO brine to a volume concentration factor (VCF) of 2.9 (65% water recovery). A stable MD permeate flux was achieved with good quality permeate (conductivity of 15-20 µS/cm). Repeated cycles of MD-KCuFC(PAN) sorption with SWRO brine enabled the extraction of 2.26 mg Rb+ from 12 L of brine (equivalent to 1.9 kg of Rb/day, or 0.7 tonne/yr from a plant producing 10,000 m3/day brine). KCuFC(PAN) showed a high regeneration and reuse capacity. NH4Cl air stripping followed by resorcinol formaldehyde (RF) resin filtration enabled to recover Rb+ from the desorbed solution.


Asunto(s)
Rubidio/química , Purificación del Agua , Destilación , Membranas Artificiales , Ósmosis , Sales (Química) , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA