Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(6): 114281, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38805395

RESUMEN

Survival from UV-induced DNA lesions relies on nucleotide excision repair (NER) and the Mec1ATR DNA damage response (DDR). We study DDR and NER in aging cells and find that old cells struggle to repair DNA and activate Mec1ATR. We employ pharmacological and genetic approaches to rescue DDR and NER during aging. Conditions activating Snf1AMPK rescue DDR functionality, but not NER, while inhibition of the TORC1-Sch9S6K axis restores NER and enhances DDR by tuning PP2A activity, specifically in aging cells. Age-related repair deficiency depends on Snf1AMPK-mediated phosphorylation of Sch9S6K on Ser160 and Ser163. PP2A activity in old cells is detrimental for DDR and influences NER by modulating Snf1AMPK and Sch9S6K. Hence, the DDR and repair pathways in aging cells are influenced by the metabolic tuning of opposing AMPK and TORC1 networks and by PP2A activity. Specific Sch9S6K phospho-isoforms control DDR and NER efficiency, specifically during aging.


Asunto(s)
Senescencia Celular , Reparación del ADN , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Daño del ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Fosforilación , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Antioxidants (Basel) ; 12(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38001792

RESUMEN

BACKGROUND: With the development of an aging sociality, aging-related diseases, such as Alzheimer's disease, cardiovascular disease, and diabetes, are dramatically increasing. To find small molecules from natural products that can prevent the aging of human beings and the occurrence of these diseases, we used the lifespan assay of yeast as a bioassay system to screen an antiaging substance. Isoquercitrin (IQ), an antiaging substance, was isolated from Apocynum venetum L., an herbal tea commonly consumed in Xinjiang, China. AIM OF THE STUDY: In the present study, we utilized molecular-biology technology to clarify the mechanism of action of IQ. METHODS: The replicative lifespans of K6001 yeasts and the chronological lifespans of YOM36 yeasts were used to screen and confirm the antiaging effect of IQ. Furthermore, the reactive oxygen species (ROS) and malondialdehyde (MDA) assay, the survival assay of yeast under stresses, real-time polymerase chain reaction (RT-PCR) and Western blotting analyses, the replicative-lifespan assay of mutants, such as Δsod1, Δsod2, Δgpx, Δcat, Δskn7, Δuth1, Δatg32, Δatg2, and Δrim15 of K6001, autophagy flux analysis, and a lifespan assay of K6001 yeast after giving a mitophagy inhibitor and activator were performed. RESULTS: IQ extended the replicative lifespans of the K6001 yeasts and the chronological lifespans of the YOM36 yeasts. Furthermore, the reactive nitrogen species (RNS) showed no change during the growth phase but significantly decreased in the stationary phase after treatment with IQ. The survival rates of the yeasts under oxidative- and thermal-stress conditions improved upon IQ treatment, and thermal stress was alleviated by the increasing superoxide dismutase (Sod) activity. Additionally, IQ decreased the ROS and MDA of the yeast while increasing the activity of antioxidant enzymes. However, it could not prolong the replicative lifespans of Δsod1, Δsod2, Δgpx, Δcat, Δskn7, and Δuth1 of K6001. IQ significantly increased autophagy and mitophagy induction, the presence of free green fluorescent protein (GFP) in the cytoplasm, and ubiquitination in the mitochondria of the YOM38 yeasts at the protein level. IQ did not prolong the replicative lifespans of Δatg2 and Δatg32 of K6001. Moreover, IQ treatment led to a decrease in Sch9 at the protein level and an increase in the nuclear translocation of Rim15 and Msn2. CONCLUSIONS: These results indicated that the Sch9/Rim15/Msn signaling pathway, as well as antioxidative stress, anti-thermal stress, and autophagy, were involved in the antiaging effects of IQ in the yeasts.

3.
Chin Med ; 18(1): 111, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670345

RESUMEN

BACKGROUND: Aging is an important pathogenic factor of age-related diseases and has brought huge health threat and economic burden to the society. Dendrobium nobile Lindl., a valuable herb in China, promotes longevity according to the record of ancient Chinese materia medica. This study aimed to discover the material basis of D. nobile as an anti-aging herb and elucidate its action mechanism. METHODS: K6001 yeast replicative lifespan assay was used to guide the isolation of D. nobile. The chronological lifespan assay of YOM36 yeast was further conducted to confirm the anti-aging activity of dendrobine. The mechanism in which dendrobine exerts anti-aging effect was determined by conducting anti-oxidative stress assay, quantitative real-time PCR, Western blot, measurements of anti-oxidant enzymes activities, determination of nuclear translocation of Rim15 and Msn2, and replicative lifespan assays of Δsod1, Δsod2, Δcat, Δgpx, Δatg2, Δatg32, and Δrim15 yeasts. RESULTS: Under the guidance of K6001 yeast replicative lifespan system, dendrobine with anti-aging effect was isolated from D. nobile. The replicative and chronological lifespans of yeast were extended upon dendrobine treatment. In the study of action mechanism, dendrobine improved the survival rate of yeast under oxidative stress, decreased the levels of reactive oxygen species and malondialdehyde, and enhanced the enzyme activities and gene expression of superoxide dismutase and catalase, but it failed to elongate the replicative lifespans of Δsod1, Δsod2, Δcat, and Δgpx yeast mutants. Meanwhile, dendrobine enhanced autophagy occurrence in yeast but had no effect on the replicative lifespans of Δatg2 and Δatg32 yeast mutants. Moreover, the inhibition of Sch9 phosphorylation and the promotion of nuclear translocation of Rim15 and Msn2 were observed after treatment with denrobine. However, the effect of dendrobine disappeared from the Δrim15 yeast mutant after lifespan extension, oxidative stress reduction, and autophagy enhancement. CONCLUSIONS: Dendrobine exerts anti-aging activity in yeast via the modification of oxidative stress and autophagy through the Sch9/Rim15/Msn2 signaling pathway. Our work provides a scientific basis for the exploitation of D. nobile as an anti-aging herb.

4.
J Fungi (Basel) ; 9(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37623558

RESUMEN

Yeast cells are equipped with different nutrient signaling pathways that enable them to sense the availability of various nutrients and adjust metabolism and growth accordingly. These pathways are part of an intricate network since most of them are cross-regulated and subject to feedback regulation at different levels. In yeast, a central role is played by Sch9, a protein kinase that functions as a proximal effector of the conserved growth-regulatory TORC1 complex to mediate information on the availability of free amino acids. However, recent studies established that Sch9 is more than a TORC1-effector as its activity is tuned by several other kinases. This allows Sch9 to function as an integrator that aligns different input signals to achieve accuracy in metabolic responses and stress-related molecular adaptations. In this review, we highlight the latest findings on the structure and regulation of Sch9, as well as its role as a nutrient-responsive hub that impacts on growth and longevity of yeast cells. Given that most key players impinging on Sch9 are well-conserved, we also discuss how studies on Sch9 can be instrumental to further elucidate mechanisms underpinning healthy aging in mammalians.

5.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37173282

RESUMEN

Budding yeast uses the TORC1-Sch9p and cAMP-PKA signalling pathways to regulate adaptations to changing nutrient environments. Dynamic and single-cell measurements of the activity of these cascades will improve our understanding of the cellular adaptation of yeast. Here, we employed the AKAR3-EV biosensor developed for mammalian cells to measure the cellular phosphorylation status determined by Sch9p and PKA activity in budding yeast. Using various mutant strains and inhibitors, we show that AKAR3-EV measures the Sch9p- and PKA-dependent phosphorylation status in intact yeast cells. At the single-cell level, we found that the phosphorylation responses are homogenous for glucose, sucrose, and fructose, but heterogeneous for mannose. Cells that start to grow after a transition to mannose correspond to higher normalized Förster resonance energy transfer (FRET) levels, in line with the involvement of Sch9p and PKA pathways to stimulate growth-related processes. The Sch9p and PKA pathways have a relatively high affinity for glucose (K0.5 of 0.24 mM) under glucose-derepressed conditions. Lastly, steady-state FRET levels of AKAR3-EV seem to be independent of growth rates, suggesting that Sch9p- and PKA-dependent phosphorylation activities are transient responses to nutrient transitions. We believe that the AKAR3-EV sensor is an excellent addition to the biosensor arsenal for illuminating cellular adaptation in single yeast cells.


Asunto(s)
Técnicas Biosensibles , Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Animales , Saccharomyces cerevisiae/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Manosa/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Glucosa/metabolismo , Mamíferos/metabolismo
6.
Microbiol Spectr ; 11(3): e0524922, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37042757

RESUMEN

Mitogen-activated protein kinase (MAPK) pathways regulate essential processes in eukaryotes. However, since uncontrolled activation of these cascades has deleterious effects, precise negative regulation of signaling flow through them, mainly executed by protein phosphatases, is crucial. Previous studies showed that the absence of Ptc1 protein phosphatase results in the upregulation of the MAPK of the cell wall integrity (CWI) pathway, Slt2, and numerous functional defects in Saccharomyces cerevisiae, including a failure to undergo cell separation under heat stress. In this study, we demonstrate that multibudded ptc1Δ cells also exhibit impaired mitochondrial inheritance and that excessive Slt2 kinase activity is responsible for their growth deficiency and daughter-specific G1 cell cycle arrest, as well as other physiological alterations, namely, mitochondrial hyperpolarization and reactive oxygen species (ROS) accumulation. We bring to light the fact that sustained Slt2 kinase activity inhibits signaling through the Sch9 branch of the TORC1 pathway in ptc1Δ cells, leading to increased autophagy. After cytokinesis, septin rings asymmetrically disassembled in ptc1Δ multibudded cells, abnormally remaining at the daughter cell side and eventually relocalizing at the daughter cell periphery, where they occasionally colocalized with the autophagic protein Atg9. Finally, we show that the inability of ptc1Δ cells to undergo cell separation is not due to a failure in the regulation of Ace2 and morphogenesis (RAM) pathway, since the transcription factor Ace2 correctly enters the daughter cell nuclei. However, the Ace2-regulated endochitinase Cts1 did not localize to the septum, preventing the proper degradation of this structure. IMPORTANCE This study provides further evidence that the cell cycle is regulated by complex signaling networks whose purpose is to guarantee a robust response to environmental threats. Using the S. cerevisiae eukaryotic model, we show that, under the stress conditions that activate the CWI MAPK pathway, the absence of the protein phosphatase Ptc1 renders Slt2 hyperactive, leading to numerous physiological alterations, including perturbed mitochondrial inheritance, oxidative stress, changes in septin dynamics, increased autophagy, TORC1-Sch9 inhibition, and ultimately cell cycle arrest and the failure of daughter cells to separate, likely due to the absence of key degradative enzymes at the septum. These results imply novel roles for the CWI pathway and unravel new cell cycle-regulatory controls that operate beyond the RAM pathway, arresting buds in G1 without compromising further division rounds in the mother cell.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/farmacología , Puntos de Control del Ciclo Celular
7.
EMBO Rep ; 23(4): e53477, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35166010

RESUMEN

The vacuole/lysosome plays essential roles in the growth and proliferation of many eukaryotic cells via the activation of target of rapamycin complex 1 (TORC1). Moreover, the yeast vacuole/lysosome is necessary for progression of the cell division cycle, in part via signaling through the TORC1 pathway. Here, we show that an essential cyclin-dependent kinase, Bur1, plays a critical role in cell cycle progression in cooperation with TORC1. A mutation in BUR1 combined with a defect in vacuole inheritance shows a synthetic growth defect. Importantly, the double mutant, as well as a bur1-267 mutant on its own, has a severe defect in cell cycle progression from G1 phase. In further support that BUR1 functions with TORC1, mutation of bur1 alone results in high sensitivity to rapamycin, a TORC1 inhibitor. Mechanistic insight for Bur1 function comes from the findings that Bur1 directly phosphorylates Sch9, a target of TORC1, and that both Bur1 and TORC1 are required for the activation of Sch9. Together, these discoveries suggest that multiple signals converge on Sch9 to promote cell cycle progression.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacuolas , Ciclo Celular/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción , Vacuolas/metabolismo
8.
Yeast ; 38(6): 339-351, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33978982

RESUMEN

Much like other living organisms, yeast cells have a limited life span, in terms of both the maximal length of time a cell can stay alive (chronological life span) and the maximal number of cell divisions it can undergo (replicative life span). Over the past years, intensive research revealed that the life span of yeast depends on both the genetic background of the cells and environmental factors. Specifically, the presence of stress factors, reactive oxygen species, and the availability of nutrients profoundly impact life span, and signaling cascades involved in the response to these factors, including the target of rapamycin (TOR) and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathways, play a central role. Interestingly, yeast life span also has direct implications for its use in industrial processes. In beer brewing, for example, the inoculation of finished beer with live yeast cells, a process called "bottle conditioning" helps improve the product's shelf life by clearing undesirable carbonyl compounds such as furfural and 2-methylpropanal that cause staling. However, this effect depends on the reductive metabolism of living cells and is thus inherently limited by the cells' chronological life span. Here, we review the mechanisms underlying chronological life span in yeast. We also discuss how this insight connects to industrial observations and ultimately opens new routes towards superior industrial yeasts that can help improve a product's shelf life and thus contribute to a more sustainable industry.


Asunto(s)
Cerveza/análisis , Cerveza/microbiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , División Celular , Regulación Fúngica de la Expresión Génica , Microbiología Industrial , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Tiempo
9.
G3 (Bethesda) ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-33901283

RESUMEN

Nutrient sensing is important for cell growth, aging, and longevity. In Saccharomyces cerevisiae, Sch9, an AGC-family protein kinase, is a major nutrient sensing kinase homologous to mammalian Akt and S6 kinase. Sch9 integrates environmental cues with cell growth by functioning downstream of TORC1 and in parallel with the Ras/PKA pathway. Mutations in SCH9 lead to reduced cell growth in dextrose medium; however, reports on the ability of sch9Δ mutants to utilize non-fermentable carbon sources are inconsistent. Here, we show that sch9Δ mutant strains cannot grow on non-fermentable carbon sources and rapidly accumulate suppressor mutations, which reverse growth defects of sch9Δ mutants. sch9Δ induces gene expression of three transcription factors required for utilization of non-fermentable carbon sources, Cat8, Adr1, and Hap4, while sch9Δ suppressor mutations, termed sns1 and sns2, strongly decrease the gene expression of those transcription factors. Despite the genetic suppression interactions, both sch9Δ and sns1 (or sns2) homozygous mutants have severe defects in meiosis. By screening mutants defective in sporulation, we identified additional sch9Δ suppressor mutants with mutations in GPB1, GPB2, and MCK1. Using library complementation and genetic analysis, we identified SNS1 and SNS2 to be IRA2 and IRA1, respectively. Furthermore, we discovered that lifespan extension in sch9Δ mutants is dependent on IRA2 and that PKA inactivation greatly increases basal expression of CAT8, ADR1, and HAP4. Our results demonstrate that sch9Δ leads to complete loss of growth on non-fermentable carbon sources and mutations in MCK1 or genes encoding negative regulators of the Ras/PKA pathway reverse sch9Δ mutant phenotypes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Supresión Genética , Carbono/metabolismo , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Biochem J ; 478(2): 357-375, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33394033

RESUMEN

Multiple starvation-induced, high-affinity nutrient transporters in yeast function as receptors for activation of the protein kinase A (PKA) pathway upon re-addition of their substrate. We now show that these transceptors may play more extended roles in nutrient regulation. The Gap1 amino acid, Mep2 ammonium, Pho84 phosphate and Sul1 sulfate transceptors physically interact in vitro and in vivo with the PKA-related Sch9 protein kinase, the yeast homolog of mammalian S6 protein kinase and protein kinase B. Sch9 is a phosphorylation target of TOR and well known to affect nutrient-controlled cellular processes, such as growth rate. Mapping with peptide microarrays suggests specific interaction domains in Gap1 for Sch9 binding. Mutagenesis of the major domain affects the upstart of growth upon the addition of L-citrulline to nitrogen-starved cells to different extents but apparently does not affect in vitro binding. It also does not correlate with the drop in L-citrulline uptake capacity or transceptor activation of the PKA target trehalase by the Gap1 mutant forms. Our results reveal a nutrient transceptor-Sch9-TOR axis in which Sch9 accessibility for phosphorylation by TOR may be affected by nutrient transceptor-Sch9 interaction under conditions of nutrient starvation or other environmental challenges.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sitios de Unión , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Citrulina/metabolismo , Mutación , Dominios y Motivos de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
11.
Apoptosis ; 25(9-10): 686-696, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32666259

RESUMEN

Caloric restriction mimetics (CRMs) are promising molecules to prevent age-related diseases as they activate pathways driven by a true caloric restriction. Hydroxycitric acid (HCA) is considered a bona fide CRM since it depletes acetyl-CoA pools by acting as a competitive inhibitor of ATP citrate lyase (ACLY), ultimately repressing protein acetylation and promoting autophagy. Importantly, it can reduce inflammation and tumour development. In order to identify phenotypically relevant new HCA targets we have investigated HCA effects in Saccharomyces cerevisiae, where ACLY is lacking. Strikingly, the drug revealed a powerful anti-aging effect, another property proposed to mark bona fide CRMs. Chronological life span (CLS) extension but also resistance to acetic acid of HCA treated cells were associated to repression of cell apoptosis and necrosis. HCA also largely prevented cell deaths caused by a severe oxidative stress. The molecule could act widely by negatively modulating cell metabolism, similarly to citrate. Indeed, it inhibited both growth reactivation and the oxygen consumption rate of yeast cells in stationary phase. Genetic analyses on yeast CLS mutants indicated that part of the HCA effects can be sensed by Sch9 and Ras2, two conserved key regulators of nutritional and stress signal pathways of primary importance. Our data together with published biochemical analyses indicate that HCA may act with multiple mechanisms together with ACLY repression and allowed us to propose an integrated mechanistic model as a basis for future investigations.


Asunto(s)
ATP Citrato (pro-S)-Liasa/genética , Envejecimiento/efectos de los fármacos , Apoptosis/efectos de los fármacos , Citratos/farmacología , Envejecimiento/genética , Apoptosis/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética
12.
Aging (Albany NY) ; 11(19): 8418-8432, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31582588

RESUMEN

Endogenous hydrogen sulfide mediates anti-aging benefits of dietary restriction (DR). However, it is unclear how H2S production is regulated by pathways related to DR. Due to the importance of mTORC1 pathway in DR, we investigated the effects of Sch9, a yeast homolog of mammalian S6K1 and a major substrate of mTORC1 on H2S production in yeast Saccharomyces cerevisiae. We found that inhibition of the mTORC1-Sch9 pathway by SCH9 deletion, rapamycin or myriocin treatment resulted in a dramatic decrease in H2S production. Although deficiency of SCH9 did not alter the intracellular level of methionine, the intracellular level of cysteine increased in Δsch9 cells. The expression of CYS3 and CYS4, two transsulfuration pathway genes encoding cystathionine gamma-lyase (CGL) and cystathionine beta-synthase (CBS), were also decreased under mTORC1-Sch9 inhibition. Overexpression of CYS3 or CYS4 in Δsch9 cells or WT cells treated with rapamycin rescued the deficiency of H2S production. Finally, we also observed a reduction in H2S production and lowering of both mRNA and protein levels of CGL and CBS in cultured human cells treated with rapamycin to reduce mTORC1 pathway activity. Thus, our findings reveal a probably conserved mechanism in which H2S production by the transsulfuration pathway is regulated by mTORC1-Sch9 signaling.


Asunto(s)
Proteínas Fúngicas/metabolismo , Sulfuro de Hidrógeno/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Línea Celular , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Dietoterapia , Humanos , Transducción de Señal
13.
Genetics ; 212(1): 175-186, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30824472

RESUMEN

Reduced ribosome biogenesis in response to environmental conditions is a key feature of cell adaptation to stress. For example, ribosomal genes are transcriptionally repressed when cells are exposed to tunicamycin, a protein glycosylation inhibitor that induces endoplasmic reticulum stress and blocks vesicular trafficking in the secretory pathway. Here, we describe a novel regulatory model, in which tunicamycin-mediated stress induces the accumulation of long-chain sphingoid bases and subsequent activation of Pkh1/2 signaling, which leads to decreased expression of ribosomal protein genes via the downstream effectors Pkc1 and Sch9. Target of rapamycin complex 1 (TORC1), an upstream activator of Sch9, is also required. This pathway links ribosome biogenesis to alterations in membrane lipid composition under tunicamycin-induced stress conditions. Our results suggest that sphingolipid/Pkh1/2-TORC1/Sch9 signaling is an important determinant for adaptation to tunicamycin-induced stress.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Tunicamicina/farmacología , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Factores de Transcripción/metabolismo , Tunicamicina/toxicidad
14.
Elife ; 72018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29938647

RESUMEN

Upon nutritional stress, the metabolic status of cells is changed by nutrient signaling pathways to ensure survival. Altered metabolism by nutrient signaling pathways has been suggested to influence cellular lifespan. However, it remains unclear how chromatin regulation is involved in this process. Here, we found that histone H3 threonine 11 phosphorylation (H3pT11) functions as a marker for nutritional stress and aging. Sch9 and CK2 kinases cooperatively regulate H3pT11 under stress conditions. Importantly, H3pT11 defective mutants prolonged chronological lifespan (CLS) by altering nutritional stress responses. Thus, the phosphorylation of H3T11 by Sch9 and CK2 links a nutritional stress response to chromatin in the regulation of CLS.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/genética , Ácido Acético/metabolismo , Ácido Acético/farmacología , Quinasa de la Caseína II/genética , División Celular , Cromatina/química , Cromatina/metabolismo , Medios de Cultivo/farmacología , Glucosa/deficiencia , Glucosa/farmacología , Histonas/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Treonina/metabolismo
15.
Microb Cell ; 5(3): 119-136, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29487859

RESUMEN

The plasma membrane H+-ATPase Pma1 and the vacuolar V-ATPase act in close harmony to tightly control pH homeostasis, which is essential for a vast number of physiological processes. As these main two regulators of pH are responsive to the nutritional status of the cell, it seems evident that pH homeostasis acts in conjunction with nutrient-induced signalling pathways. Indeed, both PKA and the TORC1-Sch9 axis influence the proton pumping activity of the V-ATPase and possibly also of Pma1. In addition, it recently became clear that the proton acts as a second messenger to signal glucose availability via the V-ATPase to PKA and TORC1-Sch9. Given the prominent role of nutrient signalling in longevity, it is not surprising that pH homeostasis has been linked to ageing and longevity as well. A first indication is provided by acetic acid, whose uptake by the cell induces toxicity and affects longevity. Secondly, vacuolar acidity has been linked to autophagic processes, including mitophagy. In agreement with this, a decline in vacuolar acidity was shown to induce mitochondrial dysfunction and shorten lifespan. In addition, the asymmetric inheritance of Pma1 has been associated with replicative ageing and this again links to repercussions on vacuolar pH. Taken together, accumulating evidence indicates that pH homeostasis plays a prominent role in the determination of ageing and longevity, thereby providing new perspectives and avenues to explore the underlying molecular mechanisms.

16.
Curr Genet ; 64(1): 155-161, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28856407

RESUMEN

Recent research further clarified the molecular mechanisms that link nutrient signaling and pH homeostasis with the regulation of growth and survival of the budding yeast Saccharomyces cerevisiae. The central nutrient signaling kinases PKA, TORC1, and Sch9 are intimately associated to pH homeostasis, presumably allowing them to concert far-reaching phenotypical repercussions of nutritional cues. To exemplify such repercussions, we briefly describe consequences for phosphate uptake and signaling and outline interactions between phosphate homeostasis and the players involved in intra- and extracellular pH control. Inorganic phosphate uptake, its subcellular distribution, and its conversion into polyphosphates are dependent on the proton gradients created over different membranes. Conversely, polyphosphate metabolism appears to contribute in determining the intracellular pH. Additionally, inositol pyrophosphates are emerging as potent determinants of growth potential, in this way providing feedback from phosphate metabolism onto the central nutrient signaling kinases. All these data point towards the importance of phosphate metabolism in the reciprocal regulation of nutrient signaling and pH homeostasis.


Asunto(s)
Homeostasis , Concentración de Iones de Hidrógeno , Fosfatos/metabolismo , Levaduras/fisiología , Metabolismo Energético , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Polifosfatos/metabolismo
17.
Biochim Biophys Acta Mol Basis Dis ; 1864(1): 79-88, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28988886

RESUMEN

The Niemann-Pick type C is a rare neurodegenerative disease that results from loss-of-function point mutations in NPC1 or NPC2, which affect the homeostasis of sphingolipids and sterols in human cells. We have previously shown that yeast lacking Ncr1, the orthologue of human NPC1 protein, display a premature ageing phenotype and higher sensitivity to oxidative stress associated with mitochondrial dysfunctions and accumulation of long chain bases. In this study, a lipidomic analysis revealed specific changes in the levels of ceramide species in ncr1Δ cells, including decreases in dihydroceramides and increases in phytoceramides. Moreover, the activation of Sit4, a ceramide-activated protein phosphatase, increased in ncr1Δ cells. Deletion of SIT4 or CDC55, its regulatory subunit, increased the chronological lifespan and hydrogen peroxide resistance of ncr1Δ cells and suppressed its mitochondrial defects. Notably, Sch9 and Pkh1-mediated phosphorylation of Sch9 decreased significantly in ncr1Δsit4Δ cells. These results suggest that phytoceramide accumulation and Sit4-dependent signaling mediate the mitochondrial dysfunction and shortened lifespan in the yeast model of Niemann-Pick type C1, in part through modulation of the Pkh1-Sch9 pathway.


Asunto(s)
Mitocondrias/fisiología , Dinámicas Mitocondriales/genética , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/patología , Proteína Fosfatasa 2/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Esfingolípidos/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Modelos Biológicos , Organismos Modificados Genéticamente , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética
18.
Genetics ; 205(1): 201-219, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27866167

RESUMEN

Thermotolerance is a crucial virulence attribute for human pathogens, including the fungus Cryptococcus neoformans that causes fatal meningitis in humans. Loss of the protein kinase Sch9 increases C. neoformans thermotolerance, but its regulatory mechanism has remained unknown. Here, we studied the Sch9-dependent and Sch9-independent signaling networks modulating C. neoformans thermotolerance by using genome-wide transcriptome analysis and reverse genetic approaches. During temperature upshift, genes encoding for molecular chaperones and heat shock proteins were upregulated, whereas those for translation, transcription, and sterol biosynthesis were highly suppressed. In this process, Sch9 regulated basal expression levels or induced/repressed expression levels of some temperature-responsive genes, including heat shock transcription factor (HSF1) and heat shock proteins (HSP104 and SSA1). Notably, we found that the HSF1 transcript abundance decreased but the Hsf1 protein became transiently phosphorylated during temperature upshift. Nevertheless, Hsf1 is essential for growth and its overexpression promoted C. neoformans thermotolerance. Transcriptome analysis using an HSF1 overexpressing strain revealed a dual role of Hsf1 in the oxidative stress response and thermotolerance. Chromatin immunoprecipitation demonstrated that Hsf1 binds to the step-type like heat shock element (HSE) of its target genes more efficiently than to the perfect- or gap-type HSE. This study provides insight into the thermotolerance of C. neoformans by elucidating the regulatory mechanisms of Sch9 and Hsf1 through the genome-scale identification of temperature-dependent genes.


Asunto(s)
Cryptococcus neoformans/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Choque Térmico/metabolismo , Termotolerancia/fisiología , Factores de Transcripción/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Factores de Transcripción del Choque Térmico , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fosforilación , Transducción de Señal , Temperatura , Termotolerancia/genética , Factores de Transcripción/genética , Activación Transcripcional
19.
FEMS Yeast Res ; 17(1)2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27956494

RESUMEN

Grape juice fermentation is a harsh environment with many stressful conditions, and Saccharomyces cerevisiae adapts its metabolism in response to those environmental challenges. Many nutrient-sensing pathways control this feature. The Tor/Sch9p pathway promotes growth and protein synthesis when nutrients are plenty, while the transcription factor Gcn4p is required for the activation of amino acid biosynthetic pathways. We previously showed that Sch9p impact on longevity depends on the nitrogen/carbon ratio. When nitrogen is limiting, SCH9 deletion shortens chronological life span, which is the case under winemaking conditions. Its deletion also increases glycerol during fermentation, so the impact of this pathway on metabolism under winemaking conditions was studied by transcriptomic and metabolomic approaches. SCH9 deletion causes the upregulation of many amino acid biosynthesis pathways. When Gcn4p was overexpressed during winemaking, increased glycerol production was also observed. Therefore, both pathways are related in terms of glycerol production. SCH9 deletion increased the amount of the limiting enzyme in glycerol biosynthesis, glycerol-3-P dehydrogenase Gpd1p at the protein level. The impact on the metabolome of SCH9 deletion and GCN4 overexpression differed, although both showed a downregulation of glycolysis. SCH9 deletion downregulated the amount of most proteinogenic amino acids and increased the amount of lipids, such as ergosterol.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación Fúngica de la Expresión Génica , Glicerol/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Vino/microbiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Eliminación de Gen , Expresión Génica , Perfilación de la Expresión Génica , Metabolómica , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
20.
Aging (Albany NY) ; 8(11): 2827-2847, 2016 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-27855118

RESUMEN

Chronological aging of the yeast Saccharomyces cerevisiae is attributed to multi-faceted traits especially those involving genome instability, and has been considered to be an aging model for post-mitotic cells in higher organisms. Telomeres are the physical ends of eukaryotic chromosomes, and are essential for genome integrity and stability. It remains elusive whether dysregulated telomerase activity affects chronological aging. We employed the CDC13-EST2 fusion gene, which tethers telomerase to telomeres, to examine the effect of constitutively active telomerase on chronological lifespan (CLS). The expression of Cdc13-Est2 fusion protein resulted in overlong telomeres (2 to 4 folds longer than normal telomeres), and long telomeres were stably maintained during long-term chronological aging. Accordingly, genome instability, manifested by accumulation of extra-chromosomal rDNA circle species, age-dependent CAN1 marker-gene mutation frequency and gross chromosomal rearrangement frequency, was significantly elevated. Importantly, inactivation of Sch9, a downstream kinase of the target of rapamycin complex 1 (TORC1), suppressed both the genome instability and accelerated chronological aging mediated by CDC13-EST2 expression. Interestingly, loss of the CDC13-EST2 fusion gene in the cells with overlong telomeres restored the regular CLS. Altogether, these data suggest that constitutively active telomerase is detrimental to the maintenance of genome stability, and promotes chronological aging in yeast.


Asunto(s)
Inestabilidad Genómica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Telomerasa/genética , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA