Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Intervalo de año de publicación
1.
Protein Expr Purif ; : 106607, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39260807

RESUMEN

Plant non-specific lipid transfer protein (nsLTP) is able to bind and transport lipids and essential oils, as well as engage in various physiological processes, including defense against phytopathogens. Kalanchoe fedtschenkoi (Lavender Scallops) is an attractive and versatile succulent. To investigate the functional mechanism of Kalanchoe fedtschenkoi nsLTP (Ka-nsLTP), we expressed, purified and successfully obtained monomeric Ka-nsLTP. Mutational experiments revealed that the C6A variant retained the same activity as the wild-type (WT) Ka-nsLTP. Ka-nsLTP showed weak antiphytopathogenic bacterial activity, but inhibited fungal growth. Ka-nsLTP possessed a hydrophobic cavity effectively binding lauric acid. Our results offer novel molecular insights into the functional mechanism of nsLTP, which broadens our knowledge of the biological function of nsLTP in crops and provides a useful locus for genetic improvement of plants.

2.
Comp Biochem Physiol B Biochem Mol Biol ; 275: 111024, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173872

RESUMEN

Myostatin (MSTN) plays an important role in muscle development in animals, especially for mammals and fishes. However, little information has been reported on the regulation of MSTN in marine invertebrates, such as bivalves. In the present study, we cloned the MSTN promoter sequence of Yesso scallop Patinopecten yessoensis, identifying 4 transcription start sites, eleven TATA boxes and one E-box. Additionally, transcription factor binding sites, including myocyte enhancer factor 2 (MEF2) and POU homeodomain protein, were identified. The interaction between the MSTN promoter and MEF2 was analyzed to reveal the transcriptional activity of different fragment sizes of promoters through the dual-luciferase reporter assays. The highest transcriptional activity was found in recombinant plasmids with the most MEF2 binding sites, indicating that this transcription factor upregulates MSTN in Yesso scallop. This study provides new insight into the regulation of muscle growth and development in this species.

3.
Animals (Basel) ; 14(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38338140

RESUMEN

The innate immunity of marine bivalves is challenged upon exposure to heat stress, especially with increases in the frequency and intensity of heat waves. TLR4 serves a classical pattern recognition receptor in recognizing pathogenic microorganisms and activating immune responses. In this study, three genes, HMTLR4, HMMyD88 and HMTRAF6, were characterized as homologs of genes in the TLR4-MyD88 signaling pathway in the selected scallop strain "Hongmo No. 1". According to RT-PCR, acute heat stress (32 °C) inhibited genes in the TLR4-MyD88 signaling pathway, and LPS stimulation-induced activation of TLR4-MyD88 signal transduction was also negatively affected at 32 °C. ELISA showed LPS-induced tumor necrosis factor alpha (TNF-α) or lysozyme (LZM) activity, but this was independent of temperature. RNA interference (RNAi) confirmed that HMTLR4 silencing suppressed the expression of its downstream gene, whether at 24 °C or at 32 °C. The level of TNF-α and the activity of LZM also decreased after injection with dsRNA, indicating a negative effect on the innate immunity of scallops. Additionally, acute heat stress affected the suppression of downstream gene expression when compared with that at 24 °C, which led us to the hypothesis that heat stress directly influences the downstream targets of HMTLR4. These results enrich the knowledge of scallop immunity under heat stress and can be beneficial for the genetic improvement of new scallop strains with higher thermotolerance.

4.
Ecotoxicol Environ Saf ; 273: 116146, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412634

RESUMEN

Filter-feeding bivalves could accumulate paralytic shellfish toxins (PSTs) produced by harmful dinoflagellates through diet. Despite that bivalves are resistant to these neurotoxins due to possessing PST-resistant sodium channel, exposure to PSTs-producing dinoflagellates impair bivalve survival. We hypothesized that ingesting PSTs-producing dinoflagellates may influence the gut microbiota, and then the health of bivalves. To test this idea, we compared the gut microbiota of the scallop Patinopecten yessoensis, after feeding with PST-producing or non-toxic dinoflagellates. Exposure to PSTs-producing dinoflagellates resulted in a decline of gut microbial diversity and a disturbance of community structure, accompanied by a significant increase in the abundance and richness of pathogenic bacteria, represented by Vibrio. Moreover, network analysis demonstrated extensive positive correlations between pathogenic bacteria abundances and PSTs concentrations in the digestive glands of the scallops. Furthermore, isolation of a dominant Vibrio strain and its genomic analysis revealed a variety of virulence factors, including the tolC outer membrane exporter, which were expressed in the gut microbiota. Finally, the infection experiment demonstrated scallop mortality caused by the isolated Vibrio strain; further, the pathogenicity of this Vibrio strain was attenuated by a mutation in the tolC gene. Together, these findings demonstrated that the PSTs may affect gut microbiota via direct and taxa-specific interactions with opportunistic pathogens, which proliferate after transition from seawater to the gut environment. The present study has revealed novel mechanisms towards deciphering the puzzles in environmental disturbances-caused death of an important aquaculture species.


Asunto(s)
Bivalvos , Dinoflagelados , Microbioma Gastrointestinal , Pectinidae , Intoxicación por Mariscos , Toxinas Biológicas , Animales , Dinoflagelados/química , Disbiosis , Mariscos
5.
Adv Biomed Res ; 12: 229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38073735

RESUMEN

Background: Maintaining normal left ventricular geometry and function depends on the mitral valve's normal integrity. Irreparable damage to the mitral valve calls for its replacement using either a valve made up of biological tissue or metal, pyrolytic carbon, and similar materials. Materials and Methods: The material consists of 50 formalin-fixed adults, seemingly normal cadaveric hearts of either sex which were received from the Department of Anatomy of various institutes in the north region. These hearts were cut open to access the mitral valve in the left ventricle. Results: In this study, the posterior leaflet was semi-oval in shape being 3.72 cm wide at the base. Usually said to be tri-scalloped, interestingly, it was found so only in 56% of the hearts; being bi-scalloped in 20% and single-cusped in 16% of the hearts. Even four scallops and six scallops were observed in three (6%) and one (2%) hearts, respectively. Conclusions: To conclude, notable variation has been seen in the scallops of posterolateral cusps in the present study. The number of scallops varies greatly as single, double, three, four, or tetra-scalloped and most significant six or hexa-scalloped which has never been reported in the previous studies. To understand the rationale behind each unique architectural layout, such noticeable variations are crucial for scientists around the world. Cardiothoracic surgeons could find this information valuable for mitral valve surgery repair.

6.
Int J Food Microbiol ; 407: 110422, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-37804775

RESUMEN

This work is the first of its kind to report a whole-year and coastal-wide surveillance of antimicrobial resistance (AMR) of Escherichia coli with samples from the EU imposed Norwegian surveillance programme for marine bivalves. In total, 390 bivalve samples collected from January to December in 2016 at 59 different harvest locations, were examined. The occurrence of resistant E. coli in relation to the concentration of E. coli was also analysed. From each sample with E. coli (n = 261), one isolate was susceptibility tested against a panel of 14 antimicrobials from ten classes. The occurrence of resistance to at least one antimicrobial was 8.4 %. Resistance to tetracycline was most commonly detected (5.7 %), followed by resistance to ampicillin (4.6 %) and sulfamethoxazole (3.1 %). The occurrence of extended spectrum cephalosporin (ESC)-resistant E. coli, quinolone-resistant E. coli (QREC) and carbapenem-resistant Enterobacteriaceae (CRE) were detected through selective screening in 3.3 %, 12.8 % and none of the samples, respectively. Among the ESC-resistant E. coli, the blaCTX-M-15 gene was detected in nine isolates, where two isolates also carried the blaCMY-42 gene, followed by blaCTX-M-3 in two and blaCTX-M-1 in one. One isolate was resistant to ESC due to the n.-42C>T mutation in the AmpC gene. Only the presence of QREC clustered significantly (p < 0.013) in space including nine harvest locations. An increased risk (OR 9.4) of detecting ESC-resistant E. coli or QREC was found for samples with E. coli concentrations above the threshold of Class A for direct distribution to the market (i.e. 230 E. coli/100 g). However, five of the ESC-resistant E. coli and 26 of the QREC positive samples, had levels of E. coli below the threshold, thus from areas cleared for sale. Among the 17 ESC-resistant E. coli subjected to whole genome sequencing, two originated from two samples of great scallops and two samples of flat oysters, which are often consumed raw or lightly processed. One of these isolates belonged to the high-risk clone sequence type 131 and carried a plasmid born senB gene encoding the Shigella enterotoxin 2 (ShET2) attributed to cause watery diarrhoea in infections caused by Enteroinvasive E. coli (EIEC). Thus, our study shows that there is a potential risk for transmission of resistant and pathogenic E. coli to the consumers from these products.


Asunto(s)
Bivalvos , Infecciones por Escherichia coli , Quinolonas , Animales , Escherichia coli , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Cefalosporinas , Infecciones por Escherichia coli/epidemiología , beta-Lactamasas/genética
7.
Mar Biotechnol (NY) ; 25(6): 891-906, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37632589

RESUMEN

The interspecific hybrid scallops generated from the hermaphroditic bay scallops (Argopecten irradians) and Peruvian scallops (Argopecten purpuratus) showed significant heterosis in growth. However, its sterility limits large-scale hybridization and hinders the development of the scallop breeding industry. Hybrid sterility is regulated by plenty of genes and involves a range of biochemical and physiological transformations. In this study, whole-genome re-sequencing and transcriptomic analysis were performed in sterile and fertile hybrid scallops. The potential genetic variations and abnormally expressed genes were detected to explore the mechanism underlying hybrid sterility in hermaphroditic Argopecten scallops. Compared with fertile hybrids, 24 differentially expressed genes (DEGs) with 246 variations were identified to be related to fertility regulation, which were mainly enriched in germarium-derived egg chamber formation, spermatogenesis, spermatid development, mismatch repair, mitotic and meiotic cell cycles, Wnt signaling pathway, MAPK signaling pathway, calcium modulating pathway, and notch signaling pathway. Specifically, variation and abnormal expression of these genes might inhibit the progress of mitosis and meiosis, promote cell apoptosis, and impede the genesis and maturation of gametes in sterile hybrid scallops. Eleven DEGs (XIAP, KAZN, CDC42, MEIS1, SETD1B, NOTCH2, TRPV5, M- EXO1, GGT1, SBDS, and TBCEL) were confirmed by qRT-PCR validation. Our findings may enrich the determination mechanism of hybrid sterility and provide new insights into the use of interspecific hybrids for extensive breeding.


Asunto(s)
Infertilidad , Pectinidae , Masculino , Animales , Transcriptoma , Perfilación de la Expresión Génica , Hibridación Genética , Pectinidae/genética , Pectinidae/metabolismo
8.
Mar Biotechnol (NY) ; 25(5): 701-717, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37548862

RESUMEN

DNA methylation is an important epigenetic modification factor in regulating fertility. Corresponding process remains poorly investigated in hermaphroditic scallops. The interspecific F1 hybrids between the hermaphroditic bay scallops (Argopecten irradians) and Peruvian scallops (Argopecten purpuratus) exhibited significant heterosis in yield, but sterility in hybrids obstructs the utilization of the genetic resources. However, the determination mechanism of hybrid sterility in the hermaphroditic Argopecten scallops is still unclear. In this study, the effect of DNA methylation in the hybrid sterility of hermaphroditic Argopecten scallops was explored. The results showed that the mean methylation level was higher in sterile hybrids than fertile hybrids, especially on chromosome 11 of the paternal parent. A total of 61,062 differentially methylated regions (DMRs) were identified, containing 3619 differentially methylated genes (DMGs) and 1165 differentially methylated promoters that are located in the DMRs of CG sequence context. The hyper-methylated genes were enriched into five KEGG pathways, including ubiquitin-mediated proteolysis, ECM-receptor interaction, non-homologous end-joining, notch signaling, and the mismatch repair pathways. The DMGs might induce hybrid sterility by inhibition of oogenesis and egg maturation, induction of apoptosis, increased ROS, and insufficient ATP supply. Our results would enrich the determination mechanism of hybrid sterility and provide new insights into the utilization of the genetic resources of the interspecific hybrids.


Asunto(s)
Infertilidad , Pectinidae , Animales , Metilación de ADN , Fertilidad/genética , Vigor Híbrido , Pectinidae/genética
9.
Foods ; 12(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37238820

RESUMEN

In this research, scallops (Argopecten purpuratus) visceral meal (SVM) and defatted meal (SVMD) were analysed for their proximal composition, protein solubility, and amino acid profile. Hydrolysed proteins isolated from the scallop's viscera (SPH) were optimised and characterised using response surface methodology with a Box-Behnken design. The effects of three independent variables were examined: temperature (30-70 °C), time (40-80 min), and enzyme concentration (0.1-0.5 AU/g protein) on the degree of hydrolysis (DH %) as a response variable. The optimised protein hydrolysates were analysed for their proximal composition, yield, DH %, protein solubility, amino acid composition, and molecular profile. This research showed that defatted and isolation protein stages are not necessaries to obtain the hydrolysate protein. The conditions of the optimization process were 57 °C, 62 min and 0.38 AU/g protein. The amino acid composition showed a balanced profile since it conforms to the Food and Agriculture Organisation/World Health Organisation recommendations for healthy nutrition. The predominant amino acids were aspartic acid + asparagine, glutamic acid + Glutamate, Glycine, and Arginine. The protein hydrolysates' yield and DH % were higher than 90% and close to 20%, respectively, with molecular weight between 1-5 kDa. The results indicate that the protein hydrolysates of scallops (Argopecten purpuratus) visceral by product optimised and characterised was suitable a lab-scale. Further research is necessary to study the bioactivity properties with biologic activity of these hydrolysates.

10.
Chemosphere ; 331: 138787, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37119930

RESUMEN

Benzo[a]pyrene (B[a]P) commonly bioaccumulates in lipid-rich tissues due to its lipophilicity and further affects lipid metabolism. The present study systematically investigated the lipid metabolism disturbance in digestive glands of scallops (Chlamys farreri) exposure to B[a]P, based on lipidomics, transcriptomics, molecular and biochemical analysis. We exposed the scallops to environmentally relevant concentrations of B[a]P for 21 days. The bioaccumulation of B[a]P, lipid content and lipid peroxidation in digestive glands were measured. Integrated lipidomics and transcriptomics analysis, the differential lipid species were identified and key genes based on the pathways in which genes and lipid species involved together were selected in scallop exposure to 10 µg/L B[a]P. The changes of lipid profile showed that triglycerides (TGs) were accumulated after 21 days exposure, while the phospholipids (PLs) decreased demonstrated membrane structures were disrupted by B[a]P. In combination with the change of gene expression, we speculated that B[a]P could induce lipids accumulation by up-regulating lipid synthesis-related genes expression, down-regulating lipolysis-related genes expression and interfering with lipid transport. Overall, this study provides new insights into the mechanisms of lipid metabolism disturbance in bivalves exposed to PAHs, and establishes a foundation for understanding the bioaccumulation mechanism of B[a]P in aquatic organisms, which is of great importance for further ecotoxicological study.


Asunto(s)
Metabolismo de los Lípidos , Pectinidae , Animales , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Transcriptoma , Lipidómica , Pectinidae/genética , Pectinidae/metabolismo , Lípidos
11.
Fish Shellfish Immunol ; 135: 108675, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36906048

RESUMEN

The tumor necrosis factor receptor-related factor (TRAF) family has been reported to be involved in many immune pathways, such as TNFR, TLR, NLR, and RLR in animals. However, little is known about the roles of TRAF genes in the innate immune of Argopecten scallops. In this study, we first identified five TRAF genes, including TRAF2, TRAF3, TRAF4, TRAF6 and TRAF7, but not TRAF1 and TRAF5, from both the bay scallop A. irradians (Air) and the Peruvian scallop A. purpuratus (Apu). The phylogenetic analysis showed that the TRAF genes in Argopecten scallops (AiTRAF) belong to the branch of molluscan TRAF family, which lacks TRAF1 and TRAF5. Since TRAF6 is a key bridge factor in the tumor necrosis factor superfamily and plays an important role in innate and adaptive immunity, we cloned the ORFs of the TRAF6 gene in both A. irradians and A. purpuratus, as well as in two reciprocal hybrids (Aip for the hybrid Air × Apu and Api for the hybrid Apu × Air). Differences in conformational and post-translational modification resulted from the variation in amino acid sequences may cause differences in activity among them. Analysis of conserved motifs and protein structural domains revealed that AiTRAF contains typical structural domains similar to those of other mollusks and has the same conserved motifs. Tissue expression of TRAF in Argopecten scallops challenged by Vibrio anguillarum was examined by qRT-PCR. The results showed that AiTRAF were higher in gill and hepatopancreas. When challenged by Vibrio anguillarum, the expression of AiTRAF was significantly increased compared with the control group, indicating that AiTRAF may play an important role in the immunity of scallops. In addition, the expression of TRAF was higher in Api and Aip than in Air when challenged by Vibrio anguillarum, suggesting that TRAF may have contributed to the high resistance of Api and Aip to Vibrio anguillarum. The results of this study may provide new insights into the evolution and function of TRAF genes in bivalves and ultimately benefit scallop breeding.


Asunto(s)
Pectinidae , Vibrio , Animales , Filogenia , Vibrio/fisiología , Secuencia de Aminoácidos , Pectinidae/genética
12.
Fish Shellfish Immunol ; 135: 108702, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36948367

RESUMEN

Vibrio bacteria are often fatal to aquatic organisms and selection of Vibrio-resistant strains is warranted for aquaculture animals. In this study, we found that hybrids between bay scallops and Peruvian scallops exhibited significantly higher resistance to Vibrio challenge, but little is available on its mechanism. Interferon induced protein 44 (IFI44), a member of the type I interferon (IFN) family, plays an important role in the IFN immune response in invertebrates, which may also participate in the resistance to Vibrio in scallops. To explore the roles of IFI44 genes in the resistance to Vibrio, they were identified and characterized in the bay scallop (designated as AiIFI44), the Peruvian scallop (designated as ApIFI44), and their reciprocal hybrids (designated as AipIFI44 and ApiIFI44, respectively). Their open reading frame (ORF) sequences were all 1434 bp, encoding 477 amino acids, but with large variations among the four genes. The AipIFI44 and ApiIFI44 exhibited higher similarity with ApIFI44 than with AiIFI44. All four genes have a TLDc structural domain with significant variations in sequences among them. Predicted differences in conformation and posttranslational modifications may lead to altered protein activity. We further demonstrated that the AiIFI44, AipIFI44 and ApiIFI44 expressed in all the tested tissues, with the highest expression in the gills and hepatopancreas. In response to Vibrio anguillarum challenge, the profile of mRNA expression of IFI44 gene differed among the bay scallops and the two hybrids. In the bay scallops, it increased at 6 h but dramatically decreased after 12-48 h. However, the mRNA expression of both AipIFI44 and ApiIFI44 decreased at 6 h but continuously increased thereafter and reached the highest value at 48 h. The results in the present study suggest the immune responds of IFI44 in scallops and it may be related to the higher resistance to Vibrio bacterial in hybrids.


Asunto(s)
Pectinidae , Vibrio , Animales , Interferones/genética , Vibrio/fisiología , ARN Mensajero , Filogenia
13.
PeerJ ; 11: e14886, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846447

RESUMEN

Shell growth rates in relationship to seasonal changes of environmental factors were studied in a wild population of the Yesso scallop Mizuhopecten yessoensis inhabiting Amur Bay (Peter the Great Bay, Sea of Japan, Russia). It was found that food availability is not a limiting factor for the scallop growth in the study area. A phytoplankton biomass of 3.5-6.0 g m-3 provided high scallop growth rates. The largest daily shell increments were observed with a phytoplankton biomass of about 6 g m-3. With a decrease in the phytoplankton biomass to <2 g m-3, as well as with an increase to >11 g m-3, the daily shell increments reduced. It appeared that the main exogenous factors causing the seasonal variations in the scallop growth rates are the water temperature, which was too high in July and August (>18 °C) and too low in November-April (<4 °C), and the water salinity, which was too low (<30‰) for this stenohaline species in summer. The relationship of the daily shell increment in Yesso scallop with the water temperature can be described by a dome-shaped curve. The largest increments were observed at 8-16 °C. The dependence of the daily shell increments on the water salinity was also best described by a dome-shaped curve, showing the optimal range of 32.5-33.5‰. The revealed relationships, approximated by dome-shaped curves, evidently indicate that both insufficient and excessive effect of the factor negatively affects scallop growth. A suggestion was made to describe the result of the combined impact of several environmental factors on the daily shell increment as a multiplication of the functions of its dependence on each of the factors.


Asunto(s)
Pectinidae , Salinidad , Animales , Temperatura , Fitoplancton , Agua
14.
Glob Chang Biol ; 29(8): 2043-2045, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36655296

RESUMEN

Marine molluscs constitute the second largest marine fishery and are often caught in coastal and estuarine habitats. Temperature is increasing in these habitats at a rate greater than predicted, especially in warming "hotspots". This warming is accompanied by hypoxia in a duo of stressors that threatens coastal mollusc fisheries and aquaculture. Collapses of the northern bay scallop (Argopecten irradians irradians) fisheries on the Atlantic coast of the USA are likely to be driven by rapid rates of coastal warming and may provide an ominous glimpse into the prospects of other coastal mollusc fisheries in climate warming hotspots.


Asunto(s)
Cambio Climático , Pectinidae , Animales , Explotaciones Pesqueras , Ecosistema , Alimentos Marinos , Hipoxia
15.
Mar Pollut Bull ; 186: 114465, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36502773

RESUMEN

Seasonal variations of heavy metals in integrated poly-cultured scallops and seawater from Ailian Bay, northern China were analyzed to reveal the potential factor in bioaccumulation of metals in scallop Chlamys farreri. Results showed that heavy metals (Cu, Zn, As, Cd, Cr, Pb and Hg) in seawater were much below the maximum permissible limits and showed no seasonal changes, but were consistent with the growing period of the poly-cultivated kelp. The content of Zn in scallop tissues was highest with an average value of 88.35 ± 11.50 mg/kg, and Hg content was lowest (0.046 ± 0.025 mg/kg). The accumulation of Cu, As, Cd and Hg in scallops presented a significant seasonal change, and they were closely correlated with the physicochemical quality instead of heavy metals in seawater. Cadmium provided 88.9 % of the total hazard index for adults and 72.2 % for children. Arsenic should also be paid more attention in the risk assessment of human health.


Asunto(s)
Mercurio , Metales Pesados , Pectinidae , Contaminantes Químicos del Agua , Animales , Niño , Humanos , Bahías , Cadmio , Estaciones del Año , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Agua de Mar/química , China , Medición de Riesgo
16.
Mar Drugs ; 20(8)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35892940

RESUMEN

Filter-feeding bivalves can accumulate paralytic shellfish toxins (PST) produced by toxic microalgae, which may induce oxidative stress and lipid peroxidation. Peroxisomal acyl-coenzyme A oxidases (ACOXs) are key enzymes functioning in maintaining redox and lipid homeostasis, but their roles in PST response in bivalves are less understood. Herein, a total of six and six ACOXs were identified in the Chlamys farreri and Patinopecten yessoensis genome, respectively, and the expansion of ACOX1s was observed. Gene expression analysis revealed an organ/tissue-specific expression pattern in both scallops, with all ACOXs being predominantly expressed in the two most toxic organs, digestive glands and kidneys. The regulation patterns of scallop ACOXs after exposure to different PST-producing algaes Alexandrium catenella (ACDH) and A. minutum (AM-1) were revealed. After ACDH exposure, more differentially expressed genes (DEGs) were identified in C. farreri digestive glands (three) and kidneys (five) than that in P. yessoensis (two), but the up-regulated DEGs showed similar expression patterns in both species. In C. farreri, three DEGs were found in both digestive glands and kidneys after AM-1 exposure, with two same CfACOX1s being acutely and chronically induced, respectively. Notably, these two CfACOX1s also showed different expression patterns in kidneys between ACDH (acute response) and AM-1 (chronic response) exposure. Moreover, inductive expression of CfACOXs after AM-1 exposure was observed in gills and mantles, and all DEGs in both tissues were up-regulated and their common DEGs exhibited both acute and chronic induction. These results indicate the involvement of scallop ACOXs in PST response, and their plasticity expression patterns between scallop species, among tissues, and between the exposure of different PST analogs.


Asunto(s)
Bivalvos , Dinoflagelados , Pectinidae , Toxinas Biológicas , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Animales , Bivalvos/metabolismo , Coenzima A/metabolismo , Dinoflagelados/genética , Dinoflagelados/metabolismo , Oxidación-Reducción , Pectinidae/genética
17.
Front Physiol ; 13: 872562, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903068

RESUMEN

Phosphatase and tensin homolog deleted on chromosome ten (PTEN) has been found to regulate longevity through the PI3K/Akt/FoxO pathway and maintenance of genome integrity in worms, flies, and mammals. However, limited information is available on the roles of PTEN in longevity of aquatic animals. Here we extended this paradigm using two closely related Argopecten scallops, Argopecten purpuratus, and Argopecten irradians, with significantly distinct life spans, which are commercially important bivalve species for fishery and aquaculture in China, United States, Peru, and Chile. The ORFs of the ApPTEN and AiPTEN were 1,476 and 1,473 bp, which encoded 491 and 490 amino acids, respectively. There were 48 synonymous and 16 non-synonymous SNPs and one InDel of three nucleotides between ApPTEN and AiPTEN, resulting in variations in 15 amino acids and lack of S453 in AiPTEN. Differences in conformation and posttranslational modification were predicted between ApPTEN and AiPTEN, which may indicate different activities of ApPTEN and AiPTEN. When the animals were subjected to nutrition restriction, the expression of both ApPTEN and AiPTEN was upregulated, with AiPTEN responded faster and more robust than ApPTEN. Ionizing radiation induced significantly elevated expression of ApPTNE but not AiPTEN in the adductor muscle, and the mortality rate of A. purpuratus was significantly lower than that of A. irradians, indicating that ApPTNE may play a protective role by maintaining the genome integrity. RNAi of ApPTNE significantly downregulated the expression of its downstream regulated genes known to favor longevity, such as FoxO, Mn-SOD, and CAT. These results indicated that PTEN may contribute to the longevity of A. purpuratus through regulation of nutrient availability and genomic stability, probably via PI3K/Akt/FoxO pathway. Our study may provide new evidence for understanding of the conservative functions of PTEN in regulation of lifespan in animals and human, and it may also benefit the selection of scallops strains with long lifespan and thus larger size.

18.
Harmful Algae ; 116: 102251, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35710207

RESUMEN

Domoic acid (DA), the phycotoxin responsible for amnesic shellfish poisoning (ASP), is an excitatory amino acid naturally produced by at least twenty-eight species of the bloom-forming marine diatoms Pseudo-nitzschia spp. Suspension feeders, such as bivalve mollusks, can accumulate and lengthy retain high amounts of DA in their tissues, threatening human health and leading to extensive-prolonged fishery closures, and severe economic losses. This is particularly problematic for the king scallop Pecten maximus, which retains high burdens of DA from months to years compared to other fast-depurator bivalves. Nonetheless, the physiological and cellular processes responsible for this retention are still unknown. In this work, for the first time, a novel immunohistochemical techniques based on the use of an anti-DA antibody was successfully developed and applied for DA-detection in bivalve tissues at a subcellular level. Our results show that in naturally contaminated P. maximus following a Pseudo-nitzschia australis outbreak, DA is visualized mainly within small membrane-bounded vesicles (1 - 2.5 µm) within the digestive gland cells, identified as autophagosomic structures by means of immune-electron microscopy, as well as in the mucus-producing cells, particularly those from gonad ducts and digestive tract. Trapping of DA in autophagososomes may be a key mechanism in the long retention of DA in scallops. These results and the development of DA-immunodetection are essential to provide a better understanding of the fate of DA, and further characterize DA contamination-decontamination kinetics in marine bivalves, as well as the main mechanisms involved in the long retention of this toxin in P. maximus.


Asunto(s)
Bivalvos , Diatomeas , Pecten , Pectinidae , Animales , Ácido Kaínico/análogos & derivados , Toxinas Marinas , Mariscos
19.
Biology (Basel) ; 11(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35336826

RESUMEN

Paramyosin is an important myofibrillar protein in molluscan smooth muscle. The full-length cDNA encoding paramyosin has been identified from Yesso scallop Patinopecten yessoensis. The length of paramyosin molecule has been found to be 3715 bp, which contains an open reading frame (ORF) of 2805 bp for 934 amino acid residues. Characterization of P. yessoensis paramyosin reveals the typical structural feature of coiled-coil protein, including six α-helix (α1-α6) and one coil (η) structures. Multiple phosphorylation sites have been predicted at the N-terminus of paramyosin, representing the unique phosphorylation sites in scallops. The highest levels of mRNA and protein expression of paramyosin have been found in foot and the smooth adductor muscle. According to whole-mount in situ hybridization (WISH), strong paramyosin mRNA signals were detected in the symmetric positions of anterior and posterior adductor muscles at late larval stages. These findings support that paramyosin may serve as the most important components for myogenesis and catch regulation in scallops. The present findings will not only help uncover the potential function of myofibrillar proteins in molluscs but also provide molecular evidence to infer evolutionary relationships among invertebrates.

20.
Mar Environ Res ; 176: 105604, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35306402

RESUMEN

The magnitude and causal mechanisms of a massive beach stranding of Tehuelche scallops that occurred in November 2017 in San José Gulf, Argentina, were investigated with the long-term goal of improving the assessment and management of the scallop fishery. The biomass of scallops washed ashore and deposited over a 10-km stretch of coast was estimated by quadrat sampling and compared with the results of a scallop stock assessment survey conducted three months prior to the stranding event. The resulting estimate of total biomass loss was in the order of 200 t, representing 10% of the estimated total scallop biomass in the San José gulf. The stranding coincided with persistent strong southerly winds (13 m/s) blowing for 24 h in San José Gulf, and large-scale windstorms that affected the southern tip of South America. Surface waves predicted under such windstorm conditions could generate strong bottom orbital velocities at shallow waters (<10 m depth), sufficient to drag and transport ashore scallops by Stokes drift (600-2000 m in 24 h). Analysis of local wind data recorded over a 6.8-year period indicated that such windstorm conditions occurred with an average frequency of 7.7 times per year, implying that beach strandings could have a significant impact on the scallop resource and its fishery. The actual impact of windstorms would depend on the location, depth and size composition of scallop beds, shallow beds (<10 m depth) being more susceptible to stranding risks. The use of spatial harvest control rules, instead of the global total allowable catch used at present, could reduce the risks of yield loss by directing the harvest to the more vulnerable scallop beds.


Asunto(s)
Pectinidae , Animales , Argentina , Explotaciones Pesqueras , Alimentos Marinos , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA