Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202409693, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993073

RESUMEN

The photoelectrochemical reduction of nitrate to ammonia (PEC NO3RR) has emerged as a promising pathway for facilitating the natural nitrogen cycle. The PEC NO3RR can lower the reduction potential needed for ammonia synthesis through photogenerated voltage, showcasing the significant potential for merging abundant solar energy with sustainable nitrogen fixation. However, it is influenced by the selective photocathodes with poor carrier kinetics, low catalytic selectivity, and ammonia yields. There are few reports on suitable photoelectrodes owning efficient charge transport on PEC NO3RR at low overpotentials. Herein, we rationally constructed the CuSn alloy co-catalysts on the antimony sulfides with a highly selective PEC ammonia and an ultra-low onset potential (0.62 VRHE). CuSn/TiO2/Sb2S3 achieved an ammonia faradic efficiency of 97.82% at a low applied potential of 0.4 VRHE, and an ammonia yield of 16.96 µmol h-1 cm-2 at 0 VRHE under one sun illumination. Dynamics experiments and theoretical calculations have demonstrated that CuSn/TiO2/Sb2S3 has an enhanced charge separation and transfer efficiency, facilitating photogenerated electrons to participate in PEC NO3RR quickly. Meanwhile, moderate NO2* adsorption on this photocathode optimizes the catalytic activity and increases the NH4+ yield. This work opens an avenue for designing sulfide-based photocathodes for the efficient route of solar-to-ammonia conversion.

2.
ACS Appl Mater Interfaces ; 16(32): 42513-42521, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39078374

RESUMEN

Herein, the precise fabrication of Sb2S3 and low Se content Sb2SeyS3-y indoor photovoltaics is reported, and a measurement protocol for photovoltaic performance is suggested and applied. Insertion of the SnO2 buried layer decreases the thickness and parasitic absorption of the CdS layer. The introduction of minor Se into Sb2S3 and the use of spiro-OMeTAD:TMT-TTF improve the charge transport of indoor photovoltaics. Using a white light-emitting diode (LED) under illuminance of 1000, 500, and 200 lx with color temperatures of 3347 and 6103 K, indoor photovoltaics with fluorine doped tin oxide (FTO)/SnO2 (17 nm)/CdS (20 nm)/Sb2S3/spiro-OMeTAD:TMT-TTF/Au exhibit power conversion efficiency (PCE) values of 17.59, 16.66, 16.44, 16.56, 15.50, and 14.07%, respectively. Indoor photovoltaics with FTO/SnO2 (17 nm)/CdS (20 nm)/Sb2SeyS3-y(Sb/S/Se = 1:1.42:0.06)/spiro-OMeTAD:TMT-TTF/Au achieve PCE values of 18.53, 17.62, 17.07, 17.30, 16.24, and 15.38%, respectively. The PCE values of 17.59, 16.66, and 16.44% are the highest values reported for Sb2S3 indoor photovoltaics, and the other PCEs are all reported for the first time. Considering the trillion-dollar-sized market from the Internet of Things (IoT), this work can further bring an unprecedented thrust to the development of self-powered IoT devices by harvesting energy from indoor photovoltaics, thereby realizing the recycling of photon energy and reducing the use of batteries and the emission of CO2.

3.
Angew Chem Int Ed Engl ; : e202411305, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009482

RESUMEN

The productions of hydrogen peroxide (H2O2) and hydrogen (H2) in a photoelectrochemical (PEC) water splitting cell suffer from an onset potential that limits solar conversion efficiencies. The formation of H2O2 through two-electron PEC water oxidation reaction competes with four-electron oxidation evolution reaction. Herein, we developed the surface selenium doped antimony trisulfide photoelectrode with the integrated ruthenium cocatalyst (Ru/Sb2(S,Se)3) to achieve the low onset potential and high Faraday efficiency (FE) for selective H2O2 production. The photoanode exhibits an average FE of 85% in the potential range of 0.4-1.6 VRHE and the H2O2 yield of 1.01 µmol cm-2 min-1 at 1.6 VRHE, especially at low potentials of 0.1-0.55 VRHE with 80.4% FE. Impressively, an unassisted PEC system that employs light and electrolyte was constructed to simultaneously produce H2O2 and H2 production on both Ru/Sb2(S,Se)3 photoanode and the Pt/TiO2/Sb2S3 photocathode. The integrated system enables the average PEC H2O2 production rate of 0.637 µmol cm-2 min-1 without applying any addition bias. This is the first demonstration that Sb2S3-based photoelectrodes exhibit H2O2/H2 two-side production with a strict key factor of the system, which represents its powerful platform to achieve high efficiency and productivity and the feasibility to facilitate value-added products in neutral conditions.

4.
J Hazard Mater ; 476: 134932, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38936189

RESUMEN

Bismuth sulfide (Bi2S3) possesses unique properties that make it a promising material for effective hydrogen sulfide (H2S) detection at room temperature. However, when exposed to light, the oxygen anions (O2-(ads)) adsorbed on the surface of Bi2S3 can react with photoinduced holes, ultimately reducing the ability to respond to H2S. In this study, Bi2S3/Sb2S3 heterostructures were synthesized, producing photoinduced oxygen anions (O2-(hv)) under visible light conditions, resulting in enhanced H2S sensing capability. The Bi2S3/Sb2S3 heterostructure sensor exhibits a two-fold increase in sensing response to 500 ppb H2S under in door light conditions relative to its performance in darkness. Additionally, the sensing response of the Bi2S3/Sb2S3 sensor (Ra/Rg= 23.3) was approximately five times higher than pure Bi2S3. The improved sensing performance of the Bi2S3/Sb2S3 heterostructures is attributable to the synergistic influence of the heterostructure configuration and light modulation, which enhances the H2S sensing performance by facilitating rapid charge transfer and increasing active sites (O2-(hv)) when exposed to visible light.

5.
Sci Rep ; 14(1): 12460, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816518

RESUMEN

The Schockley-Quisser (SQ) limit of 28.64% is distant from the Sb2S3 solar cells' record power conversion efficiency (PCE), which is 8.00%. Such poor efficiency is mostly owing to substantial interface-induced recombination losses caused by defects at the interfaces and misaligned energy levels. The endeavor of this study is to investigate an efficient Sb2S3 solar cell structure via accurate analytical modeling. The proposed model considers different recombination mechanisms such as non-radiative recombination, Sb2S3/CdS interface recombination, Auger, SRH, tunneling-enhanced recombination, and their combined impact on solar cell performance. This model is verified against experimental work (Glass/ITO/CdS/Sb2S3/Au) where a good coincidence is achieved. Several parameters effects such as thickness, doping, electronic affinity, and bandgap are scrutinized. The effect of both bulk traps located in CdS and Sb2S3 on the electrical outputs of the solar cell is analyzed thoroughly. Besides, a deep insight into the effect of interfacial traps on solar cell figures of merits is gained through shedding light into their relation with carriers' minority lifetime, diffusion length, and surface recombination velocity. Our research findings illuminate that the primary contributors to Sb2S3 degradation are interfacial traps and series resistance. Furthermore, achieving optimal band alignment by fine-tuning the electron affinity of CdS to create a Spike-like conformation is crucial for enhancing the immunity of the device versus the interfacial traps. In our study, the optimized solar cell configuration (Glass/ITO/CdS/Sb2S3/Au) demonstrates remarkable performance, including a high short-circuit current (JSC) of 47.9 mA/cm2, an open-circuit voltage (VOC) of 1.16 V, a fill factor (FF) of 54%, and a notable improvement in conversion efficiency by approximately 30% compared to conventional solar cells. Beyond its superior performance, the optimized Sb2S3 solar cell also exhibits enhanced reliability in mitigating interfacial traps at the CdS/Sb2S3 junction. This improved reliability can be attributed to our precise control of band alignment and the fine-tuning of influencing parameters.

6.
Materials (Basel) ; 17(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612169

RESUMEN

In recent years, antimony sulfide (Sb2S3) has been investigated as a photovoltaic absorber material due to its suitable absorber coefficient, direct band gap, extinction coefficient, earth-abundant, and environmentally friendly constituents. Therefore, this work proposes Sb2S3 film preparation by an effective two-step process using a new graphite box design and sulfur distribution, which has a high repeatability level and can be scalable. First, an Sb thin film was deposited using the RF-Sputtering technique, and after that, the samples were annealed with elemental sulfur into a graphite box, varying the sulfurization time from 20 to 50 min. The structural, optical, morphological, and chemical characteristics of the resulting thin films were analyzed. Results reveal the method's effectivity and the best properties were obtained for the sample sulfurized during 40 min. This Sb2S3 thin film presents an orthorhombic crystalline structure, elongated grains, a band gap of 1.69 eV, a crystallite size of 15.25 Å, and a nearly stoichiometric composition. In addition, the formation of a p-n junction was achieved by depositing silver back contact on the Glass/FTO/CdS/Sb2S3 structure. Therefore, the graphite box design has been demonstrated to be functional to obtain Sb2S3 by a two-step process.

7.
Small ; 20(31): e2311644, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38456373

RESUMEN

In the emerging Sb2S3-based solar energy conversion devices, a CdS buffer layer prepared by chemical bath deposition is commonly used to improve the separation of photogenerated electron-hole pairs. However, the cation diffusion at the Sb2S3/CdS interface induces detrimental defects but is often overlooked. Designing a stable interface in the Sb2S3/CdS heterojunction is essential to achieve high solar energy conversion efficiency. As a proof of concept, this study reports that the modification of the Sb2S3/CdS heterojunction with an ultrathin Al2O3 interlayer effectively suppresses the interfacial defects by preventing the diffusion of Cd2+ cations into the Sb2S3 layer. As a result, a water-splitting photocathode based on Ag:Sb2S3/Al2O3/CdS heterojunction achieves a significantly improved half-cell solar-to-hydrogen efficiency of 2.78% in a neutral electrolyte, as compared to 1.66% for the control Ag:Sb2S3/CdS device. This work demonstrates the importance of designing atomic interfaces and may provide a guideline for the fabrication of high-performance stibnite-type semiconductor-based solar energy conversion devices.

8.
ACS Appl Mater Interfaces ; 16(12): 15640-15648, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38488314

RESUMEN

The noble-metal-free surface-enhanced Raman scattering (SERS) substrates have gained significant attention due to their abundant sources, signal uniformity, biocompatibility, and chemical stability. However, the lack of controllable synthesis and fabrication methods for high-SERS-activity noble-metal-free substrates hinders their practical applications. In this study, we demonstrate the use of a femtosecond laser direct writing technique to precisely manipulate and modify microstructures, resulting in enhanced SERS signals from Sb2S3 nonmetal-oxide semiconductor materials. Compared with unpatterned Sb2S3 samples, the Sb2S3 microstructures exhibited up to a 16-fold increase in Raman scattering intensity. Interestingly, our results indicate that the femtosecond laser can induce a transformation in the crystalline state of Sb2S3 and significantly enhance the Raman spectrum signal within the Sb2S3 microstructures. This enhancement is also highly dependent on the period and depth of the microstructures, possibly due to the cavity effects, resulting in a stronger local field enhancement.

9.
Small ; 20(10): e2308895, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37875777

RESUMEN

Antimony-based chalcogenides have emerged as promising candidates for next-generation thin film photovoltaics. Particularly, binary Sb2 S3 thin films have exhibited great potential for optoelectronic applications, due to the facile and low-cost fabrication, simple composition, decent charge transport and superior stability. However, most of the reported efficient Sb2 S3 solar cells are realized based on chemical bath deposition and hydrothermal methods, which require large amount of solution and are normally very time-consuming. In this work, Ag ions are introduced within the Sb2 S3 sol-gel precursors, and effectively modulated the crystallization and charge transport properties of Sb2 S3 . The crystallinity of the Sb2 S3 crystal grains are enhanced and the charge carrier mobility is increased, which resulted improved charge collection efficiency and reduced charge recombination losses, reflected by the greatly improved fill factor and open-circuit voltage of the Ag incorporated Sb2 S3 solar cells. The champion devices reached a record high power conversion efficiency of 7.73% (with antireflection coating), which is comparable with the best photovoltaic performance of Sb2 S3 solar cells achieved based on chemical bath deposition and hydrothermal techniques, and pave the great avenue for next-generation solution-processed photovoltaics.

10.
Adv Mater ; 36(1): e2305841, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37947249

RESUMEN

Sb2 S3 is a promising environmentally friendly semiconductor for high performance solar cells. But, like many other polycrystalline materials, Sb2 S3 is limited by nonradiative recombination and carrier scattering by grain boundaries (GBs). This work shows how the GB density in Sb2 S3 films can be significantly reduced from 1068 ± 40 to 327 ± 23 nm µm-2 by incorporating an appropriate amount of Ce3+ into the precursor solution for Sb2 S3 deposition. Through extensive characterization of structural, morphological, and optoelectronic properties, complemented with computations, it is revealed that a critical factor is the formation of an ultrathin Ce2 S3 layer at the CdS/Sb2 S3 interface, which can reduce the interfacial energy and increase the adhesion work between Sb2 S3 and the substrate to encourage heterogeneous nucleation of Sb2 S3 , as well as promote lateral grain growth. Through reductions in nonradiative recombination at GBs and/or the CdS/Sb2 S3 heterointerface, as well as improved charge-carrier transport properties at the heterojunction, this work achieves high performance Sb2 S3 solar cells with a power conversion efficiency reaching 7.66%. An impressive open-circuit voltage (VOC ) of 796 mV is achieved, which is the highest reported thus far for Sb2 S3 solar cells. This work provides a strategy to simultaneously regulate the nucleation and growth of Sb2 S3 absorber films for enhanced device performance.

11.
Adv Sci (Weinh) ; 10(30): e2303414, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37668266

RESUMEN

Sb2 S3 is rapidly developed as light absorber material for solar cells due to its excellent photoelectric properties. However, the use of the organic hole transport layer of Spiro-OMeTAD and gold (Au) in Sb2 S3 solar cells imposes serious problems in stability and cost. In this work, low-cost molybdenum (Mo) prepared by magnetron sputtering is demonstrated to serve as a back electrode in superstrate structured Sb2 S3 solar cells for the first time. And a multifunctional layer of Se is inserted between Sb2 S3 /Mo interface by evaporation, which plays vital roles as: i) soft loading of high-energy Mo particles with the help of cottonlike-Se layer; ii) formation of surficial Sb2 Se3 on Sb2 S3 layer, and then reducing hole transportation barrier. To further alleviate the roll-over effect, a pre-selenide Mo target and consequentially form a MoSe2 is skillfully sputtered, which is expected to manipulate the band alignment and render an enhanced holes extraction. Impressively, the device with an optimized Mo electrode achieves an efficiency of 5.1%, which is one of the highest values among non-noble metal electrode based Sb2 S3 solar cells. This work sheds light on the potential development of low-cost metal electrodes for superstrate Sb2 S3 devices by carefully designing the back contact interface.

12.
ACS Appl Mater Interfaces ; 15(23): 28175-28183, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37276488

RESUMEN

Photodetectors (PDs) are critical parts of visible light communication (VLC) systems for achieving efficient photoelectronic conversion and high-fidelity transmission of signals. Antimony sulfide (Sb2S3) as a nontoxic, high optical absorption coefficient, and low-cost semiconductor becomes a promising candidate for applications in VLC systems. Particularly, Sb2S3 PDs were verified to have significantly weak light detection ability in the visible region. However, the response speed of Sb2S3 PDs with existing device structures is still relatively slow. Herein, through optimizing the device structure for the p-i-n type PDs, a p-type Sb2Se3 hole transport layer (HTL) is designed to enhance the built-in electric field and to accelerate the migration of photogenerated carriers for the high responsivity and fast response speed. The optimal thickness of the structure is obtained through the simulation of SCAPS-1D software, and the optimized devices show high-performance parameters, including a responsivity of 0.34 A W-1, a specific detectivity (D*) of 2.20 × 1012 Jones, the -3 dB bandwidth of 440 kHz, high stability, and the value of the Sb2S3 PDs can reach 60% in the range of 360-600 nm, which indicates that the device is very suitable for working in the visible light band. In addition, the resulting Sb2S3 PD is successfully integrated into VLC systems by designing a matched light detection circuit. The results suggest that the Sb2S3 PDs are expected to provide an alternative to future VLC system applications.

13.
ACS Appl Mater Interfaces ; 15(13): 16692-16701, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36962065

RESUMEN

The practical applications of metallic anodes are limited due to dendritic growth, propagation in an infinite volume during the plating process, and parasitic interfacial reactions between sodium (Na) and the electrolyte. Herein, we developed Sb2S3 microrods as a template to regulate the nucleation of metallic Na. Additionally, the propagation of the deposited metal could be spatially regulated via a "nanoconfinement effect", that is, within the conformal hard carbon (C) layer of nanothickness. Moreover, we carefully studied the seed effect of the in situ-formed Na-Sb and Na-S alloys within the hard C sheath during the Na plating process. The symmetrical cells of the Sb2S3@C composite anode achieved dendrite-free cycling at 1 mA cm-2 for 1100 h at a high capacity loading of 1 mA h cm-2 and considerably mitigated a nucleation overpotential of 20 mV. Pairing a NaVPO4F (NVPF) cathode (4.6 mg cm-2) with an in situ presodiation Sb2S3@C composite (2*Na excess) prototype delivered a high energy density and a high power density of 173.75 W h kg-1 and 868.57 W kg-1, respectively. Therefore, this study provides tremendous possibilities for employing the proposed hybrid storage mechanism in low-cost and practical applications of high-energy-density Na metal batteries.

14.
Nanotechnology ; 34(25)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36942779

RESUMEN

(Bi1-xSbx)2S3solid solution nanowires (0≤x≤0.73) are grown on fluorine-doped tin oxide (FTO) glass via physical vapor transport. The compositions were controlled by varying the Sb2S3source temperature (300 °C-453 °C) by changing the upstream locations of the Sb2S3source in the furnace while keeping the Bi2S3source at the center of the furnace (497 °C). Defect-free nanowires with phase-pure orthorhombic and quasi-1 dimensional crystal structures were grown under a modified vapor-solid mechanism affected by FTO at initial growth stage. The aspect ratios of the nanowires reached the minimum at compositionx∼0.6.As the Sb2S3source approached the Bi2S3source,xincreased owing to the increase in the Sb2S3source temperature.x/(1-x), which is proportional to the evaporation flux of the Sb2S3source, could be well-fitted with a thermally activated equation with an apparent activation energy (105kJmol-1). However, at the distance between the Sb2S3and Bi2S3sources, with the Sb2S3source at temperatures higher than 410 °C, the compositions reduced despite the increased Sb2S3evaporation flux. Such retrograde behavior was confirmed by high-resolution transmission electron microscopy, x-ray diffraction, and micro-Raman studies. This retrograde behavior is ascribed to the loss due to the reaction of gaseous Sb species with the Bi2S3source.

15.
ACS Nano ; 17(7): 6754-6769, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36942802

RESUMEN

Metal sulfide anodes have aroused much attention in potassium ion batteries (PIBs) owing to their high theoretical capacities, but the sluggish kinetics and inferior cycling performance caused by severe volumetric change and particle pulverization greatly hinder their further development. Herein, robust hollow structure design together with phase structure engineering endow (Bi-Sb)2S3@N-C anode with superior (de)potassiation kinetics and excellent electrochemical performances in PIBs. Specifically, in situ X-ray diffraction combined with density functional theory calculations and ex situ X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy (TEM) analyses indicated a fresh reaction mechanism of (Bi-Sb)2S3 anode with a distinctive multistep (de)potassiation route along (003) plane of (Bi,Sb) alloy thanks to the Bi-Sb phase regulation in (Bi-Sb)2S3 anode, ensuring it with superior reaction kinetics. Moreover, in situ TEM characterization revealed the advantages of the hollow nanostructure with carbon shell, facilitating fast ion transport kinetics and high tolerance of volume change as well as enabling the structural integrity of electrode material during (de)potassiation. As a result, the (Bi-Sb)2S3 hollow nanocube with N-doped carbon shell ((Bi-Sb)2S3@N-C) delivers a high initial Coulombic efficiency of 66.3%, a great rate performance of 289 mAh g-1 at 2.0 A g-1, and an ultralong cycling life (89% retention after 220 cycles at 0.1 A g-1 and 85% retention after 1600 cycles at 2.0 A g-1) in PIBs. Furthermore, the full cell of (Bi-Sb)2S3@N-C//PTCDA affords a high reversible capacity of 281 mA h g-1 at 1.0 A g-1 after 300 cycles. This work combines structural design and in situ techniques, proving a successful nanostructure engineering strategy to rationalize alloy-type electrode materials for PIBs.

16.
Environ Sci Pollut Res Int ; 30(44): 98747-98759, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36656480

RESUMEN

The power conversion efficiency of all-inorganic Sb2S3-on-Si two-terminal (2-T) monolithically integrated and four-terminal (4-T) mechanically stacked tandem solar cells are investigated. A one-dimensional solar cell capacitance simulator (SCAPS-1D) has been used to simulate the stand-alone antimony trisulfide (Sb2S3) top sub-cell, silicon (Si) bottom sub-cell, 2-T monolithic, and 4-T mechanically stacked tandem solar cells. The stand-alone sub-cells are optimized by extensive studies, including interface defects density, bulk defects density, absorber layer thickness, and series resistance. The power conversion efficiency (PCE) of simulated stand-alone sub-cells is compared and verified with the existing literature. A current matching condition is established to characterize the 2-T monolithic Sb2S3-on-Si tandem cell. A filtered spectrum has been utilized for bottom sub-cell measurement in the tandem solar cells. The best-simulated PCE of Sb2S3-on-Si 2-T monolithic and 4-T tandem cells is 30.22% and 29.30%, respectively. The simulation results presented in this paper open an opportunity for the scientific community to consider Sb2S3 as a potential top sub-cell material in Sb2S3-on-Si tandem solar cells with high PCE.


Asunto(s)
Modelos Teóricos , Silicio , Simulación por Computador , Capacidad Eléctrica
17.
ACS Appl Mater Interfaces ; 14(49): 54822-54829, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36469309

RESUMEN

Sulfuration plays a decisive role in enhancing crystal growth and passivate defects in the fabrication of high-efficiency metal-sulfide solar cells. However, the traditional sulfuration process always suffers from high-price professional equipment, tedious processes, low activity of S, or high toxicity of H2S. Here, we develop a desired in situ sulfuration by introducing tartaric acid additive into the hydrothermal deposition process of Sb2S3. Tartaric acid, sodium thiosulfate, and potassium antimony tartaric can form Sb2Sx-contained (x > 3) as-prepared films. Encouragingly, the annealing becomes an inspiring in situ sulfuration process, which can obtain a more compact absorber layer. In addition, the crystallinity and defect property of the Sb2S3 film are also improved significantly. Finally, we achieve a high-performance Sb2S3 solar cell with a power conversion efficiency of 6.31%, which shows an encouraging enhancement of ∼15% compared with the traditional hydrothermal process. This study provides an innovative way to prepare high-efficiency Sb2S3 solar cells and provides a desirable guide to realize the in situ sulfuration process.

18.
Heliyon ; 8(12): e12034, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36531642

RESUMEN

Antimony (Sb) chalcogenides such as antimony selenide (Sb2Se3) and antimony sulfide (Sb2S3) have distinct properties to be used as absorber semiconductors for harnessing solar energy including high absorption coefficient, tunable bandgap, low toxicity, phase stability. The potentiality of Sb2Se3 and Sb2S3 as absorber material in Al/FTO/Sb2Se3(or Sb2S3)/Au heterojunction solar cells (HJSCs) with 2D tungsten disulfide (WS2) electron transport layer (ETL) layer has been investigated numerically using SCAPS-1D solar simulator. A systematic investigation of the impact of physical properties of each active material of Sb2Se3, Sb2S3, and WS2 on photovoltaic parameters including layer thickness, carrier doping concentration, bulk defect density, interface defect density, carrier generation, and recombination. This study emphasizes the exploration of causes of low performance of actual devices and demonstrates the individual variation in the open-circuit voltage (VOC), short-circuit current density (JSC), fill factor (FF), power conversion efficiency (PCE) and quantum efficiency (QE). Thereby, highly potential heterostructures of Al/FTO/WS2/absorber (Sb2Se3 or Sb2S3)/Au proposed, in which, the PCE over 28.20 and 26.60% obtained with V OC of 850 and 1230 mV, J sc of 38.0 and 24.0 mA/cm2, and FF of 86.0 and 89.0% for Sb2Se3 and Sb2S3 absorber, respectively. These detailed findings revealed that the Sb-chalcogenide heterostructure with potential WS2 ETL can be used to realize the fabrication of feasible thin film solar cells and thus the design of high-efficiency high-current (HEHC) and high-efficiency high-voltage (HEHV) solar panels.

19.
ACS Appl Mater Interfaces ; 14(51): 57419-57427, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36511611

RESUMEN

Antimony sulfide, as a binary chalcogenide, has attracted great attention in the field of optoelectronics in recent years, particularly in photovoltaics, because of its striking merits such as earth elements abundance, excellent stability, chemical versatility, and solution processability. With the rapid development of fabrication techniques and device engineering, the device performance of Sb2S3 solar cells has experienced an unprecedented success. However, photodetectors based on Sb2S3 were barely reported, especially based on the transistor configuration. In this work, we prepared high quality Sb2S3 thin films via a sol-gel method, and Sb2S3 thin films were deposited on zinc-tin oxide based field-effect transistors. Furthermore, an additional electron transport layer was inserted between the Sb2S3 layers and the zinc-tin oxide channels and archived high-performance phototransistors with proper interfacial engineering. The optimized devices exhibited extremely high photosensitivity (106), low dark current (∼10 pA) and noise (∼11 fA Hz-1/2), high detectivity (1 × 1013 Jones), and superior device stability, indicating great potential for next generation solution-processed photodetectors.

20.
Nanomaterials (Basel) ; 12(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36234571

RESUMEN

An Sb2S3-sensitized TiO2 (Sb2S3/TiO2) photo-anode (PA) exhibiting a high photo-electrochemical (PEC) performance in water oxidation has been successfully prepared by a simple chemical bath deposition (CBD) technique. Herein, the Raman spectra and XPS spectrum of Sb2S3/TiO2 confirmed the formation of Sb2S3 on the TiO2 coatings. The Sb2S3/TiO2 photo-anode significantly shifted the absorption edge from 395 nm (3.10 eV) to 650 nm (1.90 eV). Furthermore, the Sb2S3/TiO2 photo-anode generated a photo-anodic current under visible light irradiation below 650 nm due to the photo-electrochemical action compared with the TiO2 photo-anode at 390 nm. The incident photon-to-current conversion efficiency (IPCE = 7.7%) at 400 nm and -0.3 V vs. Ag/AgCl was 37 times higher than that (0.21%) of the TiO2 photo-anodes due to the low recombination rate and acceleration of the carriers of Sb2S3/TiO2. Moreover, the photo-anodic current and photostability of the Sb2S3/TiO2 photo-anodes improved via adding the Co2+ ions to the electrolyte solution during photo-electrocatalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA