RESUMEN
In order to evaluate suitable remediation strategies for Cu-polluted soils, the growth, tolerance, and Cu accumulation of Sarcocornia perennis and Limonium brasiliense were studied in hydroponic culture using different Cu concentrations, with and without Undaria pinnatifida compost. Most measured variables (e.g., water content, aboveground dry weight, malondialdehyde, pigments concentrations, tolerance index) showed a negative effect of high Cu levels in plants without compost but not in plants with compost. Plants accumulated high Cu levels in belowground tissues (bioaccumulation factor > 1) showing low translocation to aboveground parts. Based on the results, we suggest two remediation strategies: a short-term strategy: root absorption of Cu by halophytes, and a long-term strategy: using halophytes and U. pinnatifida compost, involving absorption of Cu by the plants together with metal immobilization in the substrate. This last strategy offers an additional advantage: it provides a use for seaweed waste, considered a problem for several coastal cities.
Asunto(s)
Chenopodiaceae , Compostaje , Restauración y Remediación Ambiental , Metales Pesados , Algas Marinas , Contaminantes del Suelo , Biodegradación Ambiental , Plantas Tolerantes a la Sal , Suelo/química , Contaminantes del Suelo/análisisRESUMEN
Being adapted to saline environments, halophytes are plant species that have received considerable attention due to their ability to cope with environmental stress factors, such as high concentrations of soluble salts and heavy metals. In this work, we focused on determining if the Sarcocornia neei (S. neei) plant can be considered as an indicator of heavy metal pollution in soil. This was done by analyzing the concentration of cadmium (Cd), lead (Pb), copper (Cu), and arsenic (As) in plants and soil sampled from two wetlands in the central zone of Chile: a wetland contaminated by industrial activities and a wetland protected by the Chilean government. In addition, 14 fertility parameters (pH, electrical conductivity, organic matter, nitrogen (N), phosphorus (P), potassium (K), sodium (Na), Pb, calcium (Ca), magnesium (Mg), Manganese (Mn), zinc (Zn), iron (Fe), and boron (B)) were analyzed for soil samples in both wetlands. This was done to differentiate between available elements and contamination by heavy metals. Plant and soil samples in the contaminated wetland exhibited significantly higher heavy metal concentrations in comparison to samples analyzed from the protected wetland. This indicates that the S. neei plant can be further researched as an indicator of heavy metal pollution in saline soils and possibly for phytoremediation purposes.