Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Dev Dyn ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301774

RESUMEN

BACKGROUND: Salamanders are the only tetrapods that exhibit the ability to fully regenerate limbs. The axolotl, a neotenic salamander, has become the model organism for regeneration research. Great advances have been made providing a detailed understanding of the morphological and molecular processes involved in limb regeneration. However, it remains largely unknown how limb regeneration varies across salamanders and how factors like variable life histories, ecologies, and limb functions have influenced and shaped regenerative capacities throughout evolution. RESULTS: This study focuses on six species of plethodontid salamanders representing distinct life histories and habitats. Specimens were examined for regeneration ability after bite injuries as well as after controlled amputations. Morphological investigations revealed great regenerative abilities in all investigated species and frequent anatomical limb anomalies. Correlations were observed with respect to speed of regeneration and habitat. CONCLUSIONS: Investigating regeneration in non-model salamander taxa is essential for disentangling shared features of the regeneration process versus those that may be more taxon-specific. Gaining insights into variable aspects of regeneration under natural conditions and after conspecific biting rather than controlled amputations adds important new datapoints for understanding the evolutionary framework of regeneration and provides a broader context for interpreting findings made in the model organism axolotl.

2.
Food Chem X ; 23: 101786, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39286042

RESUMEN

To uncover the relationships between lipid components and flavor volatiles, distinctness in lipid components and odor substances in giant salamander livers of different genders were comparatively characterized through UPLC-Q Exactive-MS lipidomics and gas chromatography-ion migration spectrometry (GC-IMS). A total of 2171 and 974 lipid metabolites were detected in positive and negative ion modes, respectively. Triglycerides (TG) and phosphatidylcholines (PC) are the most abundant types of lipids. TG level in male livers was higher than that in female livers (P < 0.05), whereas PC level showed no marked variation (P > 0.05). Additionally, a total of 51 volatile components were detected through GC-IMS. Ketones (42.18 % âˆ¼ 45.44 %) and alcohols (24.19 % âˆ¼ 26.50 %) were the predominant categories, and their relative contents were higher in female livers. Finally, 30 differential lipid metabolites and 12 differential odor substances were screened and could be used as distinguishing labels in giant salamander livers of different genders. Correlation analysis indicated that PS(36:2e), TG(48:13), ZyE(37:6), and ZyE(33:6) correlated positively with 3-methyl butanal, 3-hydroxy-2-butanone, and 2-methyl-1-propanol (P < 0.05), but adversely linked with 1-penten-3-one, and 1-octen-3-one (P < 0.01). By three-fold cross-validation, prediction accuracies of these differential lipids and volatile compounds for gender recognition based on random forest model were 100 % and 92 %, respectively. These findings might not only add knowledge on lipid and volatile profiles in giant salamander livers as affected by genders, but also provide clues for their gender recognition.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39249613

RESUMEN

Microplastics (MPs), tiny plastic particles less than 5 mm in size, have emerged as a common and worrying pollutant in marine, freshwater, and terrestrial environments worldwide. In this study, we revealed the microplastic exposure of two endemic newt species for Türkiye. We found that polyethylene terephthalate (PET) was the predominant microplastic polymer type in both species, with the blue fiber shape in particular. We also found that there was a negative correlation between microplastic size and gastrointestinal tract (GIT) weight, but there was no significant difference between body length and GIT weight of both species. Our findings might be surprising as the studied species live in natural spring waters in remote, high-altitude areas. However, the detection of water bottles in their habitats appears to be the reason for their exposure to microplastic pollution. Therefore, reducing the use of single-use plastics is predicted to contribute to the conservation of these endemic newts.

4.
Sci Rep ; 14(1): 20898, 2024 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245775

RESUMEN

Taiwan harbors five endemic species of salamanders (Hynobius spp.) that inhabit distinct alpine regions, contributing to population fragmentation across isolated "sky islands". With an evolutionary history spanning multiple glacial-interglacial cycles, these species represent an exceptional paradigm for exploring biogeography and speciation. However, a lack of suitable genetic markers applicable across species has limited research efforts. Thus, developing cross-amplifying markers is imperative. Expressed sequence-tag simple-sequence repeats (EST-SSRs) that amplify across divergent lineages are ideal for species identification in instances where phenotypic differentiation is challenging. Here, we report a suite of cross-amplifying EST-SSRs from the transcriptomes of the five Hynobius species that exhibit an interspecies transferability rate of 67.67%. To identify individual markers exhibiting cross-species polymorphism and to assess interspecies genetic diversity, we assayed 140 individuals from the five species across 84 sampling sites. A set of EST-SSRs with a high interspecies polymorphic information content (PIC = 0.63) effectively classified these individuals into five distinct clusters, as supported by discriminant analysis of principal components (DAPC), STRUCTURE assignment tests, and Neighbor-joining trees. Moreover, pair-wise FST values > 0.15 indicate notable between-cluster genetic divergence. Our set of 20 polymorphic EST-SSRs is suitable for assessing population structure within and among Hynobius species, as well as for long-term monitoring of their genetic composition.


Asunto(s)
Etiquetas de Secuencia Expresada , Repeticiones de Microsatélite , Animales , Repeticiones de Microsatélite/genética , Taiwán , Urodelos/genética , Urodelos/clasificación , Variación Genética , Polimorfismo Genético , Filogenia , Transcriptoma/genética
5.
Sci Total Environ ; 949: 175169, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094663

RESUMEN

The toxic effects of nanoparticles have been increasingly investigated, but there has been limited research on amphibians, especially those of conservation value. This study examined the effects of different concentrations (0, 0.04, 0.2, 1, 5 mg/L) of polystyrene nanoplastics (PS-NPs, 80 nm) on the short-term exposure (7 d) of Andrias davidianus. Results demonstrated the concentration-dependent enrichment of PS-NPs in the intestine. Histological lesions displayed increased hepatic macrophages with cellular rupture, broken intestinal villi, decreased cuprocytes and crypt depression. Antioxidant- and inflammation-related enzyme activities were analysed, and it was found that hepatic and intestinal MDA content and CAT activity were highest in the N-1 group and SOD activity was highest in the N-0.2 group (p < 0.05). AKP activity continued to decline, and iNOS activity was highest in the N-0.2 group (p < 0.05). il-10, tgf-ß, bcl-w and txnl1 were significantly downregulated in the N-0.2 group, while il-6 and il-8 were markedly upregulated in the N-0.2 group (p < 0.05). Exposing to PS-NPs decreased probiotic bacteria (Cetobacterium, Akkermansia) and increased pathogenic bacteria (Lachnoclostridium). Our results suggest that NPs exposure can have deleterious effects on salamanders, which predicts that NPs contamination may lead to continued amphibian declines. Therefore, we strongly recommend that attention be paid to amphibians, especially endangered species, in the field of NPs.


Asunto(s)
Microbioma Gastrointestinal , Estrés Oxidativo , Poliestirenos , Urodelos , Animales , Estrés Oxidativo/efectos de los fármacos , Poliestirenos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Urodelos/fisiología , Contaminantes Químicos del Agua/toxicidad , Larva/efectos de los fármacos , Nanopartículas/toxicidad
6.
Dev Comp Immunol ; 160: 105237, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39103004

RESUMEN

Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example, using Xenopus as a model, the comparative immunology community learned about the contribution of hematopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons, and immune and mucosal interactions. However, there are also many challenges to advance the research including the lack of specific reagents and well annotated genomes of diverse species. While much is known, many important questions remain. The aim of this short commentary is to look to the future of comparative immunology of amphibians as a group. By identifying some important questions or "information-deficit" areas of research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue to support comparative immunology studies including those of amphibians.


Asunto(s)
Anfibios , Animales , Anfibios/inmunología , Alergia e Inmunología , Sistema Inmunológico/inmunología , Xenopus laevis/inmunología
7.
J Sci Food Agric ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056251

RESUMEN

BACKGROUND: Chinese giant salamander protein hydrolysates (CGSPH) are beneficial to human health as a result of their high content of amino acids and peptides. However, the formation of bitter peptides in protein hydrolysates (PHs) would hinder their application in food industry. The ultrasound assisted wet-heating Maillard reaction (MR) is an effective way to improve the flavor of PHs. Thus, the effect of ultrasonic assisted wet-heating MR on the structure and flavor of CGSPH was investigated in the present study. RESULTS: The results indicated that the ultrasound assisted wet-heating MR products (MRPs) exhibited a higher degree of graft and more significant changes in the secondary and tertiary structures of CGSPH compared to traditional wet-heating MRPs. Moreover, ultrasound assisted wet-heating MR could significantly increase the content of small molecule peptides and reduce the content of free amino acids of CGSPH, which resulted in more significant changes in flavor characteristics. The changed in flavor properties after MR (especially ultrasound assisted wet-heating MRPs) were mainly manifested by a significant reduction in bitterness, as well as a significant increase in the content of aromatic aldehyde ester compounds such as furan-2-carbaldehyde, butanal, benzaldehyde, furfural, etc. CONCLUSIONS: Ultrasound assisted wet-heating MR between CGSPH and xylose could be a promising way to improve the sensory characteristics of CGSPH. © 2024 Society of Chemical Industry.

8.
Food Chem ; 458: 140266, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964095

RESUMEN

The interaction between proteins and soluble dietary fibers plays a vital role in the development of animal-derived foods. Herein, the effects of different contents (0-3.0%) of round-bracted psyllium husk powder (PHP) on the gelation behavior, microstructure, and intermolecular interactions of Andrias davidianus myofibrillar protein (MP) were investigated. Rheological and chemical forces suggested that PHP (1.5%-2.0%) enhanced the functional properties of MP at low ionic strength, thereby increasing the viscoelasticity of mixed gels. SDS-PAGE revealed that PHP reinforced the cross-linking and aggregation of protein molecules. Circular dichroism spectroscopy, low-field nuclear magnetic resonance, and scanning electron microscopy demonstrated that PHP induced the transformation of α-helix (decreased by 14.85%) to an ordered ß-sheet structure (increased by 81.58%), which was more favorable for the formation of dense network structure and improved (10.53%) the water retention of MP gels. This study provided new insights for PHP to effectively meliorate the heat-induced gelling properties of MP.


Asunto(s)
Geles , Polvos , Psyllium , Reología , Geles/química , Animales , Psyllium/química , Polvos/química , Proteínas Musculares/química , Miofibrillas/química , Viscosidad
9.
Ann Anat ; 255: 152288, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823491

RESUMEN

BACKGROUND: The regenerative capacity of organisms declines throughout evolution, and mammals lack the ability to regenerate limbs after injury. Past approaches to achieving successful restoration through pharmacological intervention, tissue engineering, and cell therapies have faced significant challenges. OBJECTIVES: This review aims to provide an overview of the current understanding of the mechanisms behind animal limb regeneration and the successful translation of these mechanisms for human tissue regeneration. RESULTS: Particular attention was paid to the Mexican axolotl (Ambystoma mexicanum), the only adult tetrapod capable of limb regeneration. We will explore fundamental questions surrounding limb regeneration, such as how amputation initiates regeneration, how the limb knows when to stop and which parts to regenerate, and how these findings can apply to mammalian systems. CONCLUSIONS: Given the urgent need for regenerative therapies to treat conditions like diabetic foot ulcers and trauma survivors, this review provides valuable insights and ideas for researchers, clinicians, and biomedical engineers seeking to facilitate the regeneration process or elicit full regeneration from partial regeneration events.


Asunto(s)
Ambystoma mexicanum , Extremidades , Regeneración , Animales , Humanos , Regeneración/fisiología , Extremidades/fisiología , Ambystoma mexicanum/fisiología , Investigación Biomédica Traslacional , Ingeniería de Tejidos/métodos , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Amputación Quirúrgica
10.
Aging (Albany NY) ; 16(9): 7902-7914, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38709270

RESUMEN

BACKGROUND: Traditional bandages, gauze, and cotton balls are increasingly insufficient for addressing complex war injuries characterized by severe bleeding and diverse wound conditions. The giant salamander, a species of high medical value, secretes a unique mucus when stimulated, which has potential applications in wound care. MATERIALS: Giant salamander skin mucus gel dressing wrapped with bone marrow mesenchymal stem cells (BMSCs-GSSM-gel) was prepared and validated. Skin wound injury of rabbit and mouse models were established. Hematoxylin and Eosin, Masson's trichrome, and Sirius red staining were performed. The platelet aggregation rate and coagulation items were measured. Transcriptome sequencing was performed to find potential differential expression genes. RESULTS: Preparation and characterization of BMSCs-GSSM-gel were performed, and BMSCs-GSSM-gel particles with a diameter of about 200 nm were obtained. BMSCs-GSSM-gel accelerated wound healing in both rabbit and mouse models. BMSCs-GSSM-gel significantly promoted hemostasis via increasing platelet aggregation rate and fibrinogen, but decreasing activated partial thromboplastin time, thrombin time, and prothrombin time. BMSCs-GSSM-gel treatment significantly impacted several genes associated with cell adhesion, inflammatory response, collagen-containing extracellular matrix, and the positive regulation of cell migration based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Integrin Subunit Beta 4 (ITGB4), Integrin Subunit Alpha 3 (ITGA3), and Laminin Subunit Beta 3 (LAMB3) might be involved in the wound healing process by BMSCs-GSSM-gel. CONCLUSIONS: We proved the BMSCs-GSSM-gel greatly improved the skin wound healing, and it might play a crucial role in the application fields of skin damage repair.


Asunto(s)
Células Madre Mesenquimatosas , Piel , Cicatrización de Heridas , Animales , Conejos , Células Madre Mesenquimatosas/metabolismo , Piel/lesiones , Piel/metabolismo , Ratones , Moco/metabolismo , Integrinas/metabolismo , Integrinas/genética , Geles , Trasplante de Células Madre Mesenquimatosas/métodos , Masculino
11.
Aquat Toxicol ; 271: 106925, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718521

RESUMEN

Excessive antibiotic use has led to the spread of antibiotic resistance genes (ARGs), impacting gut microbiota and host health. However, the effects of antibiotics on amphibian populations remain unclear. We investigated the impact of oxytetracycline (OTC) and ciprofloxacin (CIP) on Chinese giant salamanders (Andrias davidianus), focusing on gut microbiota, ARGs, and gene expression by performing metagenome and transcriptome sequencing. A. davidianus were given OTC (20 or 40 mg/kg) or CIP (50 or 100 mg/kg) orally for 7 days. The results revealed that oral administration of OTC and CIP led to distinct changes in microbial composition and functional potential, with CIP treatment having a greater impact than OTC. Antibiotic treatment also influenced the abundance of ARGs, with an increase in fluoroquinolone and multi-drug resistance genes observed post-treatment. The construction of metagenome-assembled genomes (MAGs) accurately validated that CIP intervention enriched fish-associated potential pathogens Aeromonas hydrophila carrying an increased number of ARGs. Additionally, mobile genetic elements (MGEs), such as phages and plasmids, were implicated in the dissemination of ARGs. Transcriptomic analysis of the gut revealed significant alterations in gene expression, particularly in immune-related pathways, with differential effects observed between OTC and CIP treatments. Integration of metagenomic and transcriptomic data highlighted potential correlations between gut gene expression and microbial composition, suggesting complex interactions between the host gut and its gut microbiota in response to antibiotic exposure. These findings underscore the importance of understanding the impact of antibiotic intervention on the gut microbiome and host health in amphibians, particularly in the context of antibiotic resistance and immune function.


Asunto(s)
Antibacterianos , Ciprofloxacina , Microbioma Gastrointestinal , Oxitetraciclina , Urodelos , Animales , Oxitetraciclina/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Ciprofloxacina/farmacología , Ciprofloxacina/toxicidad , Urodelos/genética , Urodelos/microbiología , Antibacterianos/toxicidad , Antibacterianos/farmacología , Transcriptoma/efectos de los fármacos , Metagenoma , Metagenómica , Perfilación de la Expresión Génica , Contaminantes Químicos del Agua/toxicidad , Aeromonas hydrophila/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos
12.
Front Microbiol ; 15: 1356161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721598

RESUMEN

Skin microorganisms are an important component of host innate immunity and serve as the first line of defense against pathogenic infections. The relative abundance of bacterial species, microbial community assembly, and secretion of specific bacterial metabolites are closely associated with host health. In this study, we investigated the association between the skin microbiome and Ranavirus, and compared the bacterial community assemblage, alpha and beta diversity, and functional predictions of the skin bacterial assemblage in cultured healthy Chinese giant salamanders (Andrias davidianus) and individuals infected with Chinese giant salamander iridovirus (GSIV or ADRV). To achieve this, we employed 16S rRNA amplicon sequencing. The results identified Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota as the dominant phyla in the diseased and healthy groups. Alpha diversity analysis indicated that the skin bacterial community in the diseased group exhibited no significant differences in bacterial species diversity and lower species richness compared to the healthy group. Beta diversity suggested that the two group bacterial community was quite different. Kyoto encyclopedia of genes and genomes (KEGG) pathway analyze and clusters of orthologous groups of proteins (COG) function predictions revealed that changes and variations occurred in the metabolic pathways and function distribution of skin bacterial communities in two groups.

13.
Environ Toxicol Chem ; 43(5): 1126-1137, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38483077

RESUMEN

Evaluating biomarkers of stress in amphibians is critical to conservation, yet current techniques are often destructive and/or time-consuming, which limits ease of use. In the present study, we validate the use of dermal swabs in spotted salamanders (Ambystoma maculatum) for biochemical profiling, as well as glutathione (GSH) stress response following pesticide exposure. Thirty-three purchased spotted salamanders were acclimated to laboratory conditions at Washington College (Chestertown, MD, USA) for 4 weeks. Following acclimation, salamanders were randomly sorted into three groups for an 8-h pesticide exposure on soil: control with no pesticide, 2,4-dichlorophenoxyacetic acid (2,4-D), or chlorpyrifos. Before and after exposure, mucus samples were obtained by gently rubbing a polyester-tipped swab 50 times across the ventral and dorsal surfaces. Salamanders were humanely euthanized and dissected to remove the brain for acetylcholinesterase and liver for GSH and hepatic metabolome analyses, and a whole-body tissue homogenate was used for pesticide quantification. Levels of GSH were present in lower quantities on dermal swabs relative to liver tissues for chlorpyrifos, 2,4-D, and control treatments. However, 2,4-D exposures demonstrated a large effect size increase for GSH levels in livers (Cohen's d = 0.925, p = 0.036). Other GSH increases were statistically insignificant, and effect sizes were characterized as small for 2,4-D mucosal swabs (d = 0.36), medium for chlorpyrifos mucosal swabs (d = 0.713), and negligible for chlorpyrifos liver levels (d = 0.012). The metabolomics analyses indicated that the urea cycle, alanine, and glutamate metabolism biological pathways were perturbed by both sets of pesticide exposures. Obtaining mucus samples through dermal swabbing in amphibians is a viable technique for evaluating health in these imperiled taxa. Environ Toxicol Chem 2024;43:1126-1137. © 2024 SETAC.


Asunto(s)
Glutatión , Metabolómica , Animales , Glutatión/metabolismo , Moco/metabolismo , Cloropirifos/análisis , Plaguicidas/metabolismo , Ácido 2,4-Diclorofenoxiacético , Piel/metabolismo , Piel/química , Piel/efectos de los fármacos , Ambystoma/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análisis
14.
Sci Total Environ ; 927: 172041, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554955

RESUMEN

Bifenthrin (BF) is a broad-spectrum insecticide that has gained widespread use due to its high effectiveness. However, there is limited research on the potential toxic effects of bifenthrin pollution on amphibians. This study aimed to investigate the 50 % lethal concentration (LC50) and safety concentration of Chinese giant salamanders (CGS) exposed to BF (at 0, 6.25,12.5,25 and 50 µg/L BF) for 96 h. Subsequently, CGS were exposed to BF (at 0, 0.04, and 4 µg/L BF) for one week to investigate its toxic effects. Clinical poisoning symptoms, liver pathology, oxidative stress factors, DNA damage, and transcriptome differences were observed and analyzed. The results indicate that exposure to BF at 4 µg/L significantly decreased the adenosine-triphosphate (ATP), superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) contents in the brain, liver, and kidney of CGS. Additionally, the study found that the malondialdehyde (MDA), reactive oxygen species (ROS), and 8-hydroxydeoxyguanosine (8-OHdG) contents were increased. The liver tissue exhibited significant inflammatory reactions and structural malformations. RNA-seq analysis of the liver showed that BF caused abnormal antioxidant indices of CGS. This affected molecular function genes such as catalytic activity, ATP-dependent activity, metabolic processes, signaling and immune system processes, behavior, and detoxification, which were significantly upregulated, resulting in the differential genes significantly enriched in the calcium signaling pathway, PPARα signaling pathway and NF-kB signaling pathway. The results suggest that BF induces the abnormal production of free radicals, which overwhelms the body's self-defense system, leading to varying degrees of oxidative stress. This can result in oxidative damage, DNA damage, abnormal lipid metabolism, autoimmune diseases, clinical poisoning symptoms, and tissue inflammation. This work provides a theoretical basis for the rational application of bifenthrin and environmental risk assessment, as well as scientific guidance for the conservation of amphibian populations.


Asunto(s)
Daño del ADN , Insecticidas , Larva , Estrés Oxidativo , Piretrinas , Transcriptoma , Urodelos , Animales , Estrés Oxidativo/efectos de los fármacos , Insecticidas/toxicidad , Piretrinas/toxicidad , Larva/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Urodelos/genética , Urodelos/fisiología , Contaminantes Químicos del Agua/toxicidad , Hígado/efectos de los fármacos
15.
Behav Ecol ; 35(3): arae014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545452

RESUMEN

Living with a diverse array of predators provides a significant challenge for prey to learn and retain information about each predator they encounter. Consequently, some prey respond to novel predators because they have previous experience with a perceptually similar predator species, a phenomenon known as generalization of predator recognition. However, it remains unknown whether prey can generalize learned responses across ontogenetic stages of predators. Using wood frog tadpole (Lithobates sylvaticus) prey, we conducted two experiments to explore the extent of predator generalization of different life stages of two different predators: (1) predacious diving beetles (Dytiscus sp.) and (2) tiger salamanders (Ambystoma mavortium). In both experiments, we used chemical alarm cues (i.e., injured conspecific cues) to condition tadpoles to recognize the odor of either the larval or adult stage of the predator as risky. One day later, we tested tadpoles with either the larval or adult predator odor to determine whether they generalized their learned responses to the other life stages of the predator. Tadpoles generalized between larval and adult beetle odors but failed to generalize between larval and adult salamander odors. These results suggest that the odor of some predator species changes during metamorphosis to an extent that reduces their recognisability by prey. This "predator identity reset" increases the number of threats to which prey need to attend.

16.
Mol Phylogenet Evol ; 194: 108043, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38382821

RESUMEN

European marbled newts come in two species that have abutting ranges. The northern species, Triturus marmoratus, is found in France and the northern part of the Iberian Peninsula, whereas the southern species, T. pygmaeus, is found in the southwestern corner of the Iberian Peninsula. We study the intraspecific genetic differentiation of the group because morphological data show geographical variation and because the Iberian Peninsula is a recognized center of speciation and intraspecific genetic diversity for all kinds of organisms, amphibians included. We use target enrichment by sequence capture to generate c. 7 k nuclear DNA markers. We observe limited genetic exchange between the species, which confirms their distinctiveness. Both species show substantial genetic structuring that is only in part mirrored by morphological variation. Genetically differentiated groups are found in the south (T. marmoratus) and west (T. pygmaeus) of the species ranges. Our observations highlight the position of the Iberian Peninsula as a hotspot for genetic differentiation.

17.
Int J Parasitol Parasites Wildl ; 23: 100908, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38405673

RESUMEN

In the fall of 2021, California Department of Fish and Wildlife reported larval and adult California giant salamanders (Dicamptodon ensatus Eschscholtz, 1833) with skin lesions at multiple creeks in Santa Clara and Santa Cruz Counties, California, USA. Field signs in both stages included rough, lumpy textured skin, and larvae with tails that were disproportionately long, flat, wavy, and flaccid. Presence of large-bodied larvae suggested delayed metamorphosis, with some larvae having cloudy eyes and suspected blindness. To determine the cause of the disease, three first-of-the-year salamanders from one location were collected, euthanized with 20% benzocaine, and submitted for necropsy to the U.S. Geological Survey, National Wildlife Health Center. Upon gross examination, all salamanders were emaciated with no internal fat stores, and had multiple pinpoint to 1.5-mm diameter raised nodules in the skin over the body, including the head, gills, dorsum, ventrum, all four limbs, and the tail; one also had nodules in the oral cavity and tongue. Histologically all salamanders had multiple encysted metacercariae in the dermis, subcutis, and skeletal muscles of the head, body, and tail that were often associated with granulomatous and granulocytic inflammation and edema. A small number of encysted metacercariae or empty cysts were present in the gills with minimal inflammation, and rarely in the kidney with no associated inflammation. Morphology of live metacercariae (Trematoda: Heterophyiidae), and sequencing of the 28S rRNA gene identified a species of Euryhelmis (Poche, 1926). Artificial digestion of a 1.65 g, decapitated, eviscerated carcass yielded 773 metacercariae, all of similar size and morphology as the live specimens. Based on these findings, the poor body condition of these salamanders was concluded to be due to heavy parasite burden. Environmental factors such as drought, increased temperature, and overcrowded conditions may be exacerbating parasite infections in these populations of salamander.

18.
Biol Invasions ; 26(1): 187-200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38222983

RESUMEN

Non-native earthworms found in Eastern Canada substantially affect soil properties and plant diversity, but less is known about their impacts on higher faunal species. We investigated the effects of non-native earthworms on populations of Plethodon cinereus, a common woodland salamander. We hypothesized that earthworms could adversely affect P. cinereus by consuming the forest floor, thereby decreasing soil moisture and the abundance of native preys. Conversely, earthworms could positively affect P. cinereus by providing refuge in their abandoned burrows and by being a novel prey. We installed 25 coverboards in 38 mature sugar maple (Acer saccharum) forests, 24 of which were earthworm-free. Over the next two years, we monitored earthworm and salamander populations using hot mustard extractions and visible implant elastomers, respectively. At a subset of four sites, two with and two without earthworms, we determined salamander diets in the spring (May-June), summer (July-August) and fall (September-October) seasons, using gastric lavage techniques. Forest floor depth decreased, whereas population density, body size and total prey volume of P. cinereus increased, with earthworm abundance. Earthworms, which are soft-bodied and nutritious prey, composed most of the salamander diet at sites with earthworms, volumetrically accounting for > 50% of total prey volume. Despite this, we found fewer prey items in the stomach of salamanders at earthworm-invaded sites, indicating that salamanders are getting a higher caloric intake per feeding while expending less energy. We conclude that non-native earthworms have a net beneficial effect on P. cinereus populations in Eastern Canada, mainly by improving diet quality. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-023-03168-3.

19.
Conserv Biol ; 38(2): e14167, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37551773

RESUMEN

When invasive and endangered native taxa hybridize, the resulting admixture introduces novel conservation challenges. Across a large region of central California, a hybrid swarm consisting of admixed endangered California tiger salamanders (CTS) (Ambystoma californiense) and introduced barred tiger salamanders (BTS) (Ambystoma mavortium) has replaced native populations, threatening the genetic integrity of CTS and the vernal pool systems they inhabit. We employed a large-scale, genomically informed field experiment to test whether shortening breeding pond hydroperiod would favor native CTS genotypes. We constructed 14 large, seminatural ponds to evaluate the effect of hydroperiod duration on larval survival and mass at metamorphosis. We tracked changes in non-native allele frequencies with a 5237-gene exon capture array and employed a combination of custom Bayesian and generalized linear models to quantify the effect of pond duration on salamander fitness. Earlier work on this system showed hybrid superiority under many conditions and suggested that hybrids are favored in human-modified ponds with artificially long hydroperiods. Consistent with these earlier studies, we found overwhelming evidence for hybrid superiority. Very short hydroperiods substantially reduced the mass (1.1-1.5 fold) and survival probability (10-13 fold) of both native and hybrid larvae, confirming that hydroperiod likely exerts a strong selective pressure in the wild. We identified 86 genes, representing 1.8% of 4723 screened loci, that significantly responded to this hydroperiod-driven selection. In contrast to earlier work, under our more natural experimental conditions, native CTS survival and size at metamorphosis were always less than hybrids, suggesting that hydroperiod management alone will not shift selection to favor native larval genotypes. However, shortening pond hydroperiod may limit productivity of hybrid ponds, complementing other strategies to remove hybrids while maintaining vernal pool ecosystems. This study confirms and expands on previous work that highlights the importance of hydroperiod management to control invasive aquatic species.


Manejo de híbridos invasores mediante la manipulación del hidroperiodo de los estanques en el sistema de una salamandra en peligro de extinción Resumen La hibridación entre un taxón nativo en peligro y uno invasor introduce nuevos retos para la conservación. Una plaga híbrida de salamandras tigre de California (STC) (Ambystoma californiense), especie en peligro, y salamandras tigre barradas (STB) (Ambystoma mavortium) introducidas ha reemplazado a las poblaciones nativas en una región amplia del centro de California, lo que amenaza la integridad genética de las STC y el sistema de estanques vernales que habitan. Realizamos un experimento de campo a gran escala y con información genética para probar si la reducción del hidroperiodo reproductivo del estanque favorecería al genotipo de las STC nativas. Construimos 14 estanques seminaturales grandes para analizar el efecto de la duración del hidroperiodo sobre la supervivencia y masa larval durante la metamorfosis. Monitoreamos los cambios en la frecuencia de alelos no nativos con una matriz de captura de exones de 5,237 genes y utilizamos una combinación de modelos lineales generalizados y bayesianos a medida para cuantificar los efectos de la duración del estanque sobre la adaptabilidad de las salamandras. Los primeros trabajos en este sistema mostraron la superioridad híbrida bajo varias condiciones y sugirieron que los híbridos están favorecidos en los estanques con modificaciones antropogénicas e hidroperiodos de larga duración artificial. En coherencia con estos primeros resultados, encontramos evidencia abrumadora de la superioridad híbrida. Los hidroperiodos muy cortos redujeron sustancialmente la masa (1.1­1.5 más veces) y la probabilidad de supervivencia (10­13 más veces) de las larvas nativas e híbridas, lo que confirma que el hidroperiodo probablemente ejerce una fuerte presión selectiva en vida silvestre. Identificamos 86 genes, que representan el 1.8% de los 4,723 loci examinados, que respondieron significativamente a la selección basada en el hidroperiodo. Con las condiciones más naturales de nuestro experimento, y en contraste a nuestros primeros trabajos, la supervivencia y el tamaño de las STC nativas durante la metamorfosis siempre fueron menores a las de los híbridos, lo que sugiere que el manejo del hidroperiodo por sí solo no cambiará la selección a favor de los genotipos larvales nativos. Sin embargo, la reducción del hidroperiodo del estanque puede limitar la productividad de los estanques híbridos y complementar otras estrategias para extirpar a los híbridos mientras que mantiene el ecosistema del estanque vernal. Este estudio confirma y amplía los trabajos anteriores que resaltan la importancia del manejo del hidroperiodo para controlar las especies acuáticas invasoras.


Asunto(s)
Estanques , Urodelos , Animales , Humanos , Urodelos/genética , Ecosistema , Teorema de Bayes , Conservación de los Recursos Naturales , Ambystoma/genética , Larva/genética
20.
Asian J Surg ; 47(2): 1220-1221, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37977932
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA