Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37176815

RESUMEN

Curvularia lunata (No. CLST-01), a fungal pathogen isolated from the threeleaf arrowhead (Sagittaria trifolia L.), has been proposed as a potential mycoherbicide for grass weeds. This paper investigated the physiological and biochemical effects of CLST-01 phytotoxic ethyl acetate fungi extract on the leaves of the threeleaf arrowhead. The results showed that the ethyl acetate fungi extract from CLST-01 can accelerate damage to the cell membrane, increase the production of malondialdehyde, and damage the cellular structure, which could decrease the number of chloroplasts after 96 h treatments. In addition, the content of chlorophyll was reduced by 49.5%, and the net photosynthetic rate, stomatal conductance, and transpiration rate were inhibited. The rates of inhibition were 90.13%, 83.74%, and 79.31%, respectively, and the intercellular CO2 concentration increased by 51.87% on Day 9 after treatment with a concentration of 200 µg/mL. In summary, the phytotoxic ethyl acetate fungal extract from C. lunata CLST-01 can inhibit the photosynthesis of the threeleaf arrowhead leaves, destroy the ultrastructure of leaves, and affect the growth of this invasive weed. Therefore, it has the potential to be developed into a mycoherbicide for weed control in crops as a natural photosynthetic inhibitor.

2.
Pestic Biochem Physiol ; 173: 104795, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33771266

RESUMEN

Acetohydroxy acid synthase (AHAS)-inhibiting herbicides are one of the most commonly used herbicides for controlling the growth of Sagittaria trifolia L. in paddy fields in Northeastern China. In this study, we collected five suspected resistant populations of S. trifolia (R1-R5) from three different provinces of Northeastern China. The results of whole-plant bioassays revealed that those populations showed high level of resistance to bensulfuron-methyl with resistance index (GR50 R/S) ranging from 39.90 to 88.50. The results of AHAS-activity assays were consistent with the results of the whole-plant bioassays. The AHAS gene analysis showed that R2 and R3 populations contained Pro-197-Leu mutations that were highly resistant to penoxsulam; R1 and R4 populations contained Pro-197-Ser mutations that were highly resistant to bispyribac­sodium; R5 population contained Trp-574-Leu mutation that showed high resistance to IMI, PT, PTB and SU herbicides. The AHAS with resistance mutations showed less sensitivity to feedback inhibition by BCAAs and R genotypes had increased free BCAAs.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Sagittaria , Acetolactato Sintasa/genética , China , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Mutación
3.
Pestic Biochem Physiol ; 124: 81-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26453234

RESUMEN

Sagittaria trifolia L. is one of the most serious weeds in paddy fields in northeast of China and cannot be controlled effectively by bensulfuron-methyl in recent years. In this study, two suspected resistant S. trifolia populations (R1 and R2) were collected in Liaoning province of China. Whole-plant dose-response studies showed that R1 and R2 were highly resistant to bensulfuron-methyl, with the GR50 R/S ratios of 76.99 and 49.94 respectively. In vitro acetolactate synthase (ALS) assays revealed that resistance was due to reduced sensitivity of the ALS to bensulfuron-methyl inhibition, with I50 R/S ratios of 81.86 and 67.48 for R1 and R2, respectively. Total ALS activity was similar for the S and R2 populations, whereas the R1 population displayed significantly higher ALS activity than did the S population. The mutations Pro-197-Leu and Pro-197-Ser were identified in the ALS gene of the R1 and R2 populations, respectively. This is the first report examining bensulfuron-resistant S. trifolia in Liaoning province, China. The Pro197 mutation is likely responsible for resistance to bensulfuron-methyl in S. trifolia populations.


Asunto(s)
Herbicidas/toxicidad , Sagittaria/efectos de los fármacos , Compuestos de Sulfonilurea/toxicidad , Acetolactato Sintasa/genética , Resistencia a los Herbicidas/genética , Sagittaria/enzimología , Sagittaria/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA