Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Front Neurosci ; 18: 1401690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119458

RESUMEN

Direct training of Spiking Neural Networks (SNNs) on neuromorphic hardware has the potential to significantly reduce the energy consumption of artificial neural network training. SNNs trained with Spike Timing-Dependent Plasticity (STDP) benefit from gradient-free and unsupervised local learning, which can be easily implemented on ultra-low-power neuromorphic hardware. However, classification tasks cannot be performed solely with unsupervised STDP. In this paper, we propose Stabilized Supervised STDP (S2-STDP), a supervised STDP learning rule to train the classification layer of an SNN equipped with unsupervised STDP for feature extraction. S2-STDP integrates error-modulated weight updates that align neuron spikes with desired timestamps derived from the average firing time within the layer. Then, we introduce a training architecture called Paired Competing Neurons (PCN) to further enhance the learning capabilities of our classification layer trained with S2-STDP. PCN associates each class with paired neurons and encourages neuron specialization toward target or non-target samples through intra-class competition. We evaluate our methods on image recognition datasets, including MNIST, Fashion-MNIST, and CIFAR-10. Results show that our methods outperform state-of-the-art supervised STDP learning rules, for comparable architectures and numbers of neurons. Further analysis demonstrates that the use of PCN enhances the performance of S2-STDP, regardless of the hyperparameter set and without introducing any additional hyperparameters.

2.
bioRxiv ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39005474

RESUMEN

Background: Repetitive transcranial magnetic stimulation (rTMS) induces long-term changes of synapses, but the mechanisms behind these modifications are not fully understood. Although there has been progress in the development of multi-scale modeling tools, no comprehensive module for simulating rTMS-induced synaptic plasticity in biophysically realistic neurons exists.. Objective: We developed a modelling framework that allows the replication and detailed prediction of long-term changes of excitatory synapses in neurons stimulated by rTMS. Methods: We implemented a voltage-dependent plasticity model that has been previously established for simulating frequency-, time-, and compartment-dependent spatio-temporal changes of excitatory synapses in neuronal dendrites. The plasticity model can be incorporated into biophysical neuronal models and coupled to electrical field simulations. Results: We show that the plasticity modelling framework replicates long-term potentiation (LTP)-like plasticity in hippocampal CA1 pyramidal cells evoked by 10-Hz repetitive magnetic stimulation (rMS). This plasticity was strongly distance dependent and concentrated at the proximal synapses of the neuron. We predicted a decrease in the plasticity amplitude for 5 Hz and 1 Hz protocols with decreasing frequency. Finally, we successfully modelled plasticity in distal synapses upon local electrical theta-burst stimulation (TBS) and predicted proximal and distal plasticity for rMS TBS. Notably, the rMS TBS-evoked synaptic plasticity exhibited robust facilitation by dendritic spikes and low sensitivity to inhibitory suppression. Conclusion: The plasticity modelling framework enables precise simulations of LTP-like cellular effects with high spatio-temporal resolution, enhancing the efficiency of parameter screening and the development of plasticity-inducing rTMS protocols.

3.
Neural Netw ; 178: 106494, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38972130

RESUMEN

This article investigates the application of spiking neural networks (SNNs) to the problem of topic modeling (TM): the identification of significant groups of words that represent human-understandable topics in large sets of documents. Our research is based on the hypothesis that an SNN that implements the Hebbian learning paradigm is capable of becoming specialized in the detection of statistically significant word patterns in the presence of adequately tailored sequential input. To support this hypothesis, we propose a novel spiking topic model (STM) that transforms text into a sequence of spikes and uses that sequence to train single-layer SNNs. In STM, each SNN neuron represents one topic, and each of the neuron's weights corresponds to one word. STM synaptic connections are modified according to spike-timing-dependent plasticity; after training, the neurons' strongest weights are interpreted as the words that represent topics. We compare the performance of STM with four other TM methods Latent Dirichlet Allocation (LDA), Biterm Topic Model (BTM), Embedding Topic Model (ETM) and BERTopic on three datasets: 20Newsgroups, BBC news, and AG news. The results demonstrate that STM can discover high-quality topics and successfully compete with comparative classical methods. This sheds new light on the possibility of the adaptation of SNN models in unsupervised natural language processing.


Asunto(s)
Potenciales de Acción , Modelos Neurológicos , Redes Neurales de la Computación , Humanos , Potenciales de Acción/fisiología , Neuronas/fisiología , Plasticidad Neuronal/fisiología , Procesamiento de Lenguaje Natural
4.
Cogn Neurodyn ; 18(3): 1307-1321, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38826660

RESUMEN

Neuronal avalanches, a critical state of network self-organization, have been widely observed in electrophysiological records at different signal levels and spatial scales of the brain, which has significant influence on information transmission and processing in the brain. In this paper, the collective behavior of neuron firing is studied based on Leaky Integrate-and-Fire model and we induce spike-timing-dependent plasticity (STDP) to update the connection weight through competition between adjacent neurons in different network topologies. The result shows that STDP can facilitate the synchronization of the network and increase the probability of large-scale neuron avalanche obviously. Moreover, both the structure of STDP and network connection density can affect the generation of avalanche critical states, specifically, learning rate has positive correlation effect on the slope of power-law distribution and time constant has negative correction on it. However, when we the increase of heterogeneity in network, STDP can only has obvious promotion in synchrony under suitable level of heterogeneity. And we find that the process of long-term potentiation is sensitive to the adjustment of time constant and learning rate, unlike long-term depression, which is only sensitive to learning rate in heterogeneity network. It is suggested that presented results could facilitate our understanding on synchronization in various neural networks under the effect of STDP learning rules.

5.
Front Neurosci ; 18: 1387339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817912

RESUMEN

In this study, we explore spintronic synapses composed of several Magnetic Tunnel Junctions (MTJs), leveraging their attractive characteristics such as endurance, nonvolatility, stochasticity, and energy efficiency for hardware implementation of unsupervised neuromorphic systems. Spiking Neural Networks (SNNs) running on dedicated hardware are suitable for edge computing and IoT devices where continuous online learning and energy efficiency are important characteristics. We focus in this work on synaptic plasticity by conducting comprehensive electrical simulations to optimize the MTJ-based synapse design and find the accurate neuronal pulses that are responsible for the Spike Timing Dependent Plasticity (STDP) behavior. Most proposals in the literature are based on hardware-independent algorithms that require the network to store the spiking history to be able to update the weights accordingly. In this work, we developed a new learning rule, the Bi-Sigmoid STDP (B2STDP), which originates from the physical properties of MTJs. This rule enables immediate synaptic plasticity based on neuronal activity, leveraging in-memory computing. Finally, the integration of this learning approach within an SNN framework leads to a 91.71% accuracy in unsupervised image classification, demonstrating the potential of MTJ-based synapses for effective online learning in hardware-implemented SNNs.

6.
Mol Brain ; 17(1): 17, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566234

RESUMEN

Synaptopodin (SP), an actin-associated protein found in telencephalic neurons, affects activity-dependant synaptic plasticity and dynamic changes of dendritic spines. While being required for long-term depression (LTD) mediated by metabotropic glutamate receptor (mGluR-LTD), little is known about its role in other forms of LTD induced by low frequency stimulation (LFS-LTD) or spike-timing dependent plasticity (STDP). Using electrophysiology in ex vivo hippocampal slices from SP-deficient mice (SPKO), we show that absence of SP is associated with a deficit of LTD at Sc-CA1 synapses induced by LFS-LTD and STDP. As LTD is known to require AMPA- receptors internalization and IP3-receptors calcium signaling, we tested by western blotting and immunochemistry if there were changes in their expression which we found to be reduced. While we were not able to induce LTD, long-term potentiation (LTP), albeit diminished in SPKO, can be recovered by using a stronger stimulation protocol. In SPKO we found no differences in NMDAR, which are the primary site of calcium signalling to induce LTP. Our study shows, for the first time, the key role of the requirement of SP to allow induction of activity-dependant LTD at Sc-CA1 synapses.


Asunto(s)
Depresión , Colateral de Schaffer , Animales , Ratones , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(7): e2311709121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38324573

RESUMEN

Synaptic plasticity [long-term potentiation/depression (LTP/D)], is a cellular mechanism underlying learning. Two distinct types of early LTP/D (E-LTP/D), acting on very different time scales, have been observed experimentally-spike timing dependent plasticity (STDP), on time scales of tens of ms; and behavioral time scale synaptic plasticity (BTSP), on time scales of seconds. BTSP is a candidate for a mechanism underlying rapid learning of spatial location by place cells. Here, a computational model of the induction of E-LTP/D at a spine head of a synapse of a hippocampal pyramidal neuron is developed. The single-compartment model represents two interacting biochemical pathways for the activation (phosphorylation) of the kinase (CaMKII) with a phosphatase, with ion inflow through channels (NMDAR, CaV1,Na). The biochemical reactions are represented by a deterministic system of differential equations, with a detailed description of the activation of CaMKII that includes the opening of the compact state of CaMKII. This single model captures realistic responses (temporal profiles with the differing timescales) of STDP and BTSP and their asymmetries. The simulations distinguish several mechanisms underlying STDP vs. BTSP, including i) the flow of [Formula: see text] through NMDAR vs. CaV1 channels, and ii) the origin of several time scales in the activation of CaMKII. The model also realizes a priming mechanism for E-LTP that is induced by [Formula: see text] flow through CaV1.3 channels. Once in the spine head, this small additional [Formula: see text] opens the compact state of CaMKII, placing CaMKII ready for subsequent induction of LTP.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Plasticidad Neuronal , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Plasticidad Neuronal/fisiología , Potenciación a Largo Plazo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
8.
Sci Rep ; 14(1): 3388, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38337032

RESUMEN

The paramount concern of highly accurate energy-efficient computing in machines with significant cognitive capabilities aims to enhance the accuracy and efficiency of bio-inspired Spiking Neural Networks (SNNs). This paper addresses this main objective by introducing a novel spatial power spike-timing-dependent plasticity (Spatial-Pow-STDP) learning rule as a digital block with high accuracy in a bio-inspired SNN model. Motivated by the demand for precise and accelerated computation that reduces high-cost resources in neural network applications, this paper presents a methodology based on COordinate Rotation DIgital Computer (CORDIC) definitions. The proposed designs of CORDIC algorithms for exponential (Exp CORDIC), natural logarithm (Ln CORDIC), and arbitrary power function (Pow CORDIC) are meticulously detailed and evaluated to ensure optimal acceleration and accuracy, which respectively show average errors near 10-9, 10-6, and 10-5 with 4, 4, and 6 iterations. The engineered architectures for the Exp, Ln, and Pow CORDIC implementations are illustrated and assessed, showcasing the efficiency achieved through high frequency, leading to the introduction of a Spatial-Pow-STDP learning block design based on Pow CORDIC that facilitates efficient and accurate hardware computation with 6.93 × 10-3 average error with 9 iterations. The proposed learning mechanism integrates this structure into a large-scale spatiotemporal SNN consisting of three layers with reduced hyper-parameters, enabling unsupervised training in an event-based paradigm using excitatory and inhibitory synapses. As a result, the application of the developed methodology and equations in the computational SNN model for image classification reveals superior accuracy and convergence speed compared to existing spiking networks by achieving up to 97.5%, 97.6%, 93.4%, and 93% accuracy, respectively, when trained on the MNIST, EMNIST digits, EMNIST letters, and CIFAR10 datasets with 6, 2, 2, and 6 training epochs.

9.
Materials (Basel) ; 17(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276419

RESUMEN

In this study, we present the resistive switching characteristics and the emulation of a biological synapse using the ITO/IGZO/TaN device. The device demonstrates efficient energy consumption, featuring low current resistive switching with minimal set and reset voltages. Furthermore, we establish that the device exhibits typical bipolar resistive switching with the coexistence of non-volatile and volatile memory properties by controlling the compliance during resistive switching phenomena. Utilizing the IGZO-based RRAM device with an appropriate pulse scheme, we emulate a biological synapse based on its electrical properties. Our assessments include potentiation and depression, a pattern recognition system based on neural networks, paired-pulse facilitation, excitatory post-synaptic current, and spike-amplitude dependent plasticity. These assessments confirm the device's effective emulation of a biological synapse, incorporating both volatile and non-volatile functions. Furthermore, through spike-rate dependent plasticity and spike-timing dependent plasticity of the Hebbian learning rules, high-order synapse imitation was done.

10.
Front Neural Circuits ; 17: 1239096, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033788

RESUMEN

Forebrain acetylcholine (ACh) signaling has been shown to drive attention and learning. Recent experimental evidence of spatially and temporally constrained cholinergic signaling has sparked interest to investigate how it facilitates stimulus-induced learning. We use biophysical excitatory-inhibitory (E-I) multi-module neural network models to show that external stimuli and ACh signaling can mediate spatially constrained synaptic potentiation patterns. The effects of ACh on neural excitability are simulated by varying the conductance of a muscarinic receptor-regulated hyperpolarizing slow K+ current (m-current). Each network module consists of an E-I network with local excitatory connectivity and global inhibitory connectivity. The modules are interconnected with plastic excitatory synaptic connections, that change via a spike-timing-dependent plasticity (STDP) rule. Our results indicate that spatially constrained ACh release influences the information flow represented by network dynamics resulting in selective reorganization of inter-module interactions. Moreover the information flow depends on the level of synchrony in the network. For highly synchronous networks, the more excitable module leads firing in the less excitable one resulting in strengthening of the outgoing connections from the former and weakening of its incoming synapses. For networks with more noisy firing patterns, activity in high ACh regions is prone to induce feedback firing of synchronous volleys and thus strengthening of the incoming synapses to the more excitable region and weakening of outgoing synapses. Overall, these results suggest that spatially and directionally specific plasticity patterns, as are presumed necessary for feature binding, can be mediated by spatially constrained ACh release.


Asunto(s)
Acetilcolina , Colinérgicos , Acetilcolina/metabolismo , Colinérgicos/farmacología , Sinapsis/metabolismo , Aprendizaje , Redes Neurales de la Computación , Plasticidad Neuronal
11.
Nanomaterials (Basel) ; 13(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37836345

RESUMEN

The continuous advancement of Artificial Intelligence (AI) technology depends on the efficient processing of unstructured data, encompassing text, speech, and video. Traditional serial computing systems based on the von Neumann architecture, employed in information and communication technology development for decades, are not suitable for the concurrent processing of massive unstructured data tasks with relatively low-level operations. As a result, there arises a pressing need to develop novel parallel computing systems. Recently, there has been a burgeoning interest among developers in emulating the intricate operations of the human brain, which efficiently processes vast datasets with remarkable energy efficiency. This has led to the proposal of neuromorphic computing systems. Of these, Spiking Neural Networks (SNNs), designed to closely resemble the information processing mechanisms of biological neural networks, are subjects of intense research activity. Nevertheless, a comprehensive investigation into the relationship between spike shapes and Spike-Timing-Dependent Plasticity (STDP) to ensure efficient synaptic behavior remains insufficiently explored. In this study, we systematically explore various input spike types to optimize the resistive memory characteristics of Hafnium-based Ferroelectric Tunnel Junction (FTJ) devices. Among the various spike shapes investigated, the square-triangle (RT) spike exhibited good linearity and symmetry, and a wide range of weight values could be realized depending on the offset of the RT spike. These results indicate that the spike shape serves as a crucial indicator in the alteration of synaptic connections, representing the strength of the signals.

12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 692-699, 2023 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-37666759

RESUMEN

With inherent sparse spike-based coding and asynchronous event-driven computation, spiking neural network (SNN) is naturally suitable for processing event stream data of event cameras. In order to improve the feature extraction and classification performance of bio-inspired hierarchical SNNs, in this paper an event camera object recognition system based on biological synaptic plasticity is proposed. In our system input event streams were firstly segmented adaptively using spiking neuron potential to improve computational efficiency of the system. Multi-layer feature learning and classification are implemented by our bio-inspired hierarchical SNN with synaptic plasticity. After Gabor filter-based event-driven convolution layer which extracted primary visual features of event streams, we used a feature learning layer with unsupervised spiking timing dependent plasticity (STDP) rule to help the network extract frequent salient features, and a feature learning layer with reward-modulated STDP rule to help the network learn diagnostic features. The classification accuracies of the network proposed in this paper on the four benchmark event stream datasets were better than the existing bio-inspired hierarchical SNNs. Moreover, our method showed good classification ability for short event stream input data, and was robust to input event stream noise. The results show that our method can improve the feature extraction and classification performance of this kind of SNNs for event camera object recognition.


Asunto(s)
Aprendizaje , Percepción Visual , Potenciales de Acción , Redes Neurales de la Computación , Plasticidad Neuronal
13.
J Biol Phys ; 49(4): 483-507, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37656327

RESUMEN

Synchronization is a widespread phenomenon in the brain. Despite numerous studies, the specific parameter configurations of the synaptic network structure and learning rules needed to achieve robust and enduring synchronization in neurons driven by spike-timing-dependent plasticity (STDP) and temporal networks subject to homeostatic structural plasticity (HSP) rules remain unclear. Here, we bridge this gap by determining the configurations required to achieve high and stable degrees of complete synchronization (CS) and phase synchronization (PS) in time-varying small-world and random neural networks driven by STDP and HSP. In particular, we found that decreasing P (which enhances the strengthening effect of STDP on the average synaptic weight) and increasing F (which speeds up the swapping rate of synapses between neurons) always lead to higher and more stable degrees of CS and PS in small-world and random networks, provided that the network parameters such as the synaptic time delay [Formula: see text], the average degree [Formula: see text], and the rewiring probability [Formula: see text] have some appropriate values. When [Formula: see text], [Formula: see text], and [Formula: see text] are not fixed at these appropriate values, the degree and stability of CS and PS may increase or decrease when F increases, depending on the network topology. It is also found that the time delay [Formula: see text] can induce intermittent CS and PS whose occurrence is independent F. Our results could have applications in designing neuromorphic circuits for optimal information processing and transmission via synchronization phenomena.


Asunto(s)
Redes Neurales de la Computación , Plasticidad Neuronal , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Encéfalo/fisiología , Modelos Neurológicos
14.
Front Neurosci ; 17: 1213720, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37564366

RESUMEN

Brain-inspired deep spiking neural network (DSNN) which emulates the function of the biological brain provides an effective approach for event-stream spatiotemporal perception (STP), especially for dynamic vision sensor (DVS) signals. However, there is a lack of generalized learning frameworks that can handle various spatiotemporal modalities beyond event-stream, such as video clips and 3D imaging data. To provide a unified design flow for generalized spatiotemporal processing (STP) and to investigate the capability of lightweight STP processing via brain-inspired neural dynamics, this study introduces a training platform called brain-inspired deep learning (BIDL). This framework constructs deep neural networks, which leverage neural dynamics for processing temporal information and ensures high-accuracy spatial processing via artificial neural network layers. We conducted experiments involving various types of data, including video information processing, DVS information processing, 3D medical imaging classification, and natural language processing. These experiments demonstrate the efficiency of the proposed method. Moreover, as a research framework for researchers in the fields of neuroscience and machine learning, BIDL facilitates the exploration of different neural models and enables global-local co-learning. For easily fitting to neuromorphic chips and GPUs, the framework incorporates several optimizations, including iteration representation, state-aware computational graph, and built-in neural functions. This study presents a user-friendly and efficient DSNN builder for lightweight STP applications and has the potential to drive future advancements in bio-inspired research.

15.
Neural Netw ; 166: 512-523, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37579580

RESUMEN

Neural networks implemented in memristor-based hardware can provide fast and efficient in-memory computation, but traditional learning methods such as error back-propagation are hardly feasible in it. Spiking neural networks (SNNs) are highly promising in this regard, as their weights can be changed locally in a self-organized manner without the demand for high-precision changes calculated with the use of information almost from the entire network. This problem is rather relevant for solving control tasks with neural-network reinforcement learning methods, as those are highly sensitive to any source of stochasticity in a model initialization, training, or decision-making procedure. This paper presents an online reinforcement learning algorithm in which the change of connection weights is carried out after processing each environment state during interaction-with-environment data generation. Another novel feature of the algorithm is that it is applied to SNNs with memristor-based STDP-like learning rules. The plasticity functions are obtained from real memristors based on poly-p-xylylene and CoFeB-LiNbO3 nanocomposite, which were experimentally assembled and analyzed. The SNN is comprised of leaky integrate-and-fire neurons. Environmental states are encoded by the timings of input spikes, and the control action is decoded by the first spike. The proposed learning algorithm solves the Cart-Pole benchmark task successfully. This result could be the first step towards implementing a real-time agent learning procedure in a continuous-time environment that can be run on neuromorphic systems with memristive synapses.


Asunto(s)
Electrónica , Redes Neurales de la Computación , Sistemas en Línea , Aprendizaje Automático , Electrónica/instrumentación , Algoritmos
16.
Open Biol ; 13(8): 230063, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37528732

RESUMEN

Dendritic spines are crucial for excitatory synaptic transmission as the size of a spine head correlates with the strength of its synapse. The distribution of spine head sizes follows a lognormal-like distribution with more small spines than large ones. We analysed the impact of synaptic activity and plasticity on the spine size distribution in adult-born hippocampal granule cells from rats with induced homo- and heterosynaptic long-term plasticity in vivo and CA1 pyramidal cells from Munc13-1/Munc13-2 knockout mice with completely blocked synaptic transmission. Neither the induction of extrinsic synaptic plasticity nor the blockage of presynaptic activity degrades the lognormal-like distribution but changes its mean, variance and skewness. The skewed distribution develops early in the life of the neuron. Our findings and their computational modelling support the idea that intrinsic synaptic plasticity is sufficient for the generation, while a combination of intrinsic and extrinsic synaptic plasticity maintains lognormal-like distribution of spines.


Asunto(s)
Plasticidad Neuronal , Neuronas , Ratones , Ratas , Animales , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Células Piramidales/metabolismo , Espinas Dendríticas/metabolismo , Transmisión Sináptica/fisiología , Sinapsis/fisiología , Neurogénesis
17.
Biomimetics (Basel) ; 8(3)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37504208

RESUMEN

Mathematical and computer simulation of learning in living neural networks have typically focused on changes in the efficiency of synaptic connections represented by synaptic weights in the models. Synaptic plasticity is believed to be the cellular basis for learning and memory. In spiking neural networks composed of dynamical spiking units, a biologically relevant learning rule is based on the so-called spike-timing-dependent plasticity or STDP. However, experimental data suggest that synaptic plasticity is only a part of brain circuit plasticity, which also includes homeostatic and structural plasticity. A model of structural plasticity proposed in this study is based on the activity-dependent appearance and disappearance of synaptic connections. The results of the research indicate that such adaptive rewiring enables the consolidation of the effects of STDP in response to a local external stimulation of a neural network. Subsequently, a vector field approach is used to demonstrate the successive "recording" of spike paths in both functional connectome and synaptic connectome, and finally in the anatomical connectome of the network. Moreover, the findings suggest that the adaptive rewiring could stabilize network dynamics over time in the context of activity patterns' reproducibility. A universal measure of such reproducibility introduced in this article is based on similarity between time-consequent patterns of the special vector fields characterizing both functional and anatomical connectomes.

18.
Curr Biol ; 33(15): 3279-3288.e7, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37463586

RESUMEN

Episodic memory provides humans with the ability to mentally travel back to the past,1 where experiences typically involve associations between multimodal information. Forming a memory of the association is thought to be dependent on modification of synaptic connectivity.2,3 Animal studies suggest that the strength of synaptic modification depends on spike timing between pre- and post-synaptic neurons on the order of tens of milliseconds, which is termed "spike-timing-dependent plasticity" (STDP).4 Evidence found in human in vitro studies suggests different temporal scales in long-term potentiation (LTP) and depression (LTD), compared with the critical time window of STDP in animals.5,6 In the healthy human brain, STDP-like effects have been shown in the motor cortex, visual perception, and face identity recognition.7,8,9,10,11,12,13 However, evidence in human episodic memory is lacking. We investigated this using rhythmic sensory stimulation to drive visual and auditory cortices at 37.5 Hz with four phase offsets. Visual relative to auditory cued recall accuracy was significantly enhanced in the 90° condition when the visual stimulus led at the shortest delay (6.67 ms). This pattern was reversed in the 270° condition when the auditory stimulus led at the shortest delay. Within cue modality, recall was enhanced when a stimulus of the corresponding modality led the shortest delay (6.67 ms) compared with the longest delay (20 ms). Our findings provide evidence for STDP in human episodic memory, which builds an important bridge from in vitro studies in animals to human memory behavior.


Asunto(s)
Memoria Episódica , Animales , Humanos , Potenciación a Largo Plazo/fisiología , Neuronas/fisiología , Encéfalo , Recuerdo Mental , Plasticidad Neuronal/fisiología , Potenciales de Acción/fisiología
19.
Front Neurosci ; 17: 1203956, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521704

RESUMEN

A spiking neural network (SNN) is a bottom-up tool used to describe information processing in brain microcircuits. It is becoming a crucial neuromorphic computational model. Spike-timing-dependent plasticity (STDP) is an unsupervised brain-like learning rule implemented in many SNNs and neuromorphic chips. However, a significant performance gap exists between ideal model simulation and neuromorphic implementation. The performance of STDP learning in neuromorphic chips deteriorates because the resolution of synaptic efficacy in such chips is generally restricted to 6 bits or less, whereas simulations employ the entire 64-bit floating-point precision available on digital computers. Previously, we introduced a bio-inspired learning rule named adaptive STDP and demonstrated via numerical simulation that adaptive STDP (using only 4-bit fixed-point synaptic efficacy) performs similarly to STDP learning (using 64-bit floating-point precision) in a noisy spike pattern detection model. Herein, we present the experimental results demonstrating the performance of adaptive STDP learning. To the best of our knowledge, this is the first study that demonstrates unsupervised noisy spatiotemporal spike pattern detection to perform well and maintain the simulation performance on a mixed-signal CMOS neuromorphic chip with low-resolution synaptic efficacy. The chip was designed in Taiwan Semiconductor Manufacturing Company (TSMC) 250 nm CMOS technology node and comprises a soma circuit and 256 synapse circuits along with their learning circuitry.

20.
Neuropharmacology ; 237: 109619, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290535

RESUMEN

The reinforcement of voluntary alcohol-seeking behavior requires dopamine-dependent long-term synaptic plasticity in the striatum. Specifically, the long-term potentiation (LTP) of direct-pathway medium spiny neurons (dMSNs) in the dorsomedial striatum (DMS) promotes alcohol drinking. However, it remains unclear whether alcohol induces input-specific plasticity onto dMSNs and whether this plasticity directly drives instrumental conditioning. In this study, we found that voluntary alcohol intake selectively strengthened glutamatergic transmission from the medial prefrontal cortex (mPFC) to DMS dMSNs in mice. Importantly, mimicking this alcohol-induced potentiation by optogenetically self-stimulating mPFC→dMSN synapse with an LTP protocol was sufficient to drive the reinforcement of lever pressing in operant chambers. Conversely, induction of a post-pre spike timing-dependent LTD at this synapse time-locked to alcohol delivery during operant conditioning persistently decreased alcohol-seeking behavior. Our results establish a causal relationship between input- and cell-type-specific corticostriatal plasticity and the reinforcement of alcohol-seeking behavior. This provides a potential therapeutic strategy to restore normal cortical control of dysregulated basal ganglia circuitries in alcohol use disorder.


Asunto(s)
Cuerpo Estriado , Plasticidad Neuronal , Ratones , Animales , Plasticidad Neuronal/fisiología , Ganglios Basales , Potenciación a Largo Plazo , Neostriado , Etanol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA