Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37623779

RESUMEN

The goal of the current study is to enhance the hemocompatibility of polyethersulfone (PES) membranes using heparin immobilization. Heparin was immobilized covalently and via electrostatic interaction with the positively charged PES surface (pseudo-zwitterionic (pZW) complex) to investigate the influence of each method on the membrane hemocompatibility. In situ synchrotron radiation micro-computed tomography (SR-µCT) imaging, available at the Canadian Light Source (CLS), was used to critically assess the fibrinogen adsorption to the newly synthesized membranes qualitatively and quantitatively using an innovative synchrotron-based X-ray tomography technique. The surface roughness of the synthesized membranes was tested using atomic force microscopy (AFM) analysis. The membrane hemocompatibility was examined through the ex vivo clinical interaction of the membranes with patients' blood to investigate the released inflammatory biomarkers (C5a, IL-1α, IL-1ß, IL-6, vWF, and C5b-9). The presence and quantitative analysis of a stable hydration layer were assessed with DSC analysis. Surface modification resulted in reduced surface roughness of the heparin-PES membrane. Both types of heparin immobilization on the PES membrane surface resulted in a decrease in the absolute membrane surface charge from -60 mV (unmodified PES) to -13 mV for the pZW complex and -9.16 mV for the covalently attached heparin, respectively. The loss of human serum fibrinogen (FB) was investigated using UV analysis. The PES membrane modified with the heparin pseudo-ZW complex showed increased FB retention (90.5%), while the unmodified PES membrane and the heparin covalently attached PES membrane exhibited approximately the same level of FB retention (81.3% and 79.8%, respectively). A DSC analysis revealed an improvement in the content of the hydration layer (32% of non-freezable water) for the heparin-coated membranes compared to the unmodified PES membrane (2.84%). An SR-µCT analysis showed that the method of heparin immobilization significantly affects FB adsorption distribution across the membrane thickness. A quantitative analysis using SR-µCT showed that when heparin is attached covalently, FB tends to be deposited inside the membrane pores at the top (layer index 0-40) membrane regions, although its content peak distribution shifted to the membrane surface, whereas the unmodified PES membrane holds 90% of FB in the middle (layer index 40-60) of the membrane. The ex vivo hemocompatibility study indicates an improvement in reducing the von Willebrand factor (vWF) for the heparin pseudo-ZW PES membrane compared to the covalently attached heparin and the untreated PES.

2.
Mater Sci Eng C Mater Biol Appl ; 117: 111301, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32919662

RESUMEN

The aim of the current research study is to conduct a comparative assessment of biocompatibility of zwitterionic-coated polyether sulfone (PES) clinical hemodialysis (HD) membranes using both theoretical and experimental methods. Fibrinogen plays a key role in assessing membrane hemocompatibility since its membrane-surface adsorption triggers several biological reactions, complete thrombosis and embolism. As a result, adsorption of fibrinogen on the untreated PES surface and novel synthesized PES coated with poly 3-((3-(3-carboxy-2,5-dimethyltridecanamido) propyl) dimethylammonio) propane-1-sulfonate as a zwitterion (ZW) was compared. Specifically, the comparison was conducted using in situ synchrotron based micro computed tomography imaging (SR-µCT), Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). The in situ SR-µCT showed that fibrinogen adsorption and membrane fouling were intense on PES membrane surface. However, there was insignificant fouling in the middle layer of zwitterion coated PES membrane (PES-ZW). Moderate shifting of peaks was observed in ATR-FTIR spectra of the adsorbed fibrinogen when compared to the bulk protein spectra, which may be due to the conformational transformations occurring during the adsorption process. The spectral features indicate that PES-ZW surface has a lower adsorption affinity for fibrinogen than that for the PES surface. In this innovative study, the use of molecular modeling docking to evaluate the interaction of fibrinogen active pose with PES-ZW and PES models with the aim of gaining an in depth understanding of the functional group responsible for the interactions was explored. The PES and PES/zwitterion hemodialysis membrane models indicated minimum binding energies with fibrinogen by -6.00 and -6.70 kcal/mol, respectively. Docking studies thus suggest that the membrane's sulfone functional groups play an essential key role during the fibrinogen interaction and adsorption. The HD patients' uremic samples were incubated in vitro with PES and PES-ZW membranes for the inflammatory biomarkers released of Serpin/Antithrombin-III, Properdin, C5a, IL-1α, IL-1ß, TNF-α, and IL6. This study's results emphasize that even though a neutral charge of synthesized novel zwitterion PES, which enhances biocompatibility, the sulfone group still significantly affected the interactions with fibrinogen.


Asunto(s)
Membranas Artificiales , Sincrotrones , Adsorción , Biomarcadores , Humanos , Simulación del Acoplamiento Molecular , Imagen Molecular , Diálisis Renal , Propiedades de Superficie , Microtomografía por Rayos X
3.
Asian J Pharm Sci ; 15(1): 60-68, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32175018

RESUMEN

The shapes of particles and their distribution in tablets, controlled by pretreatment and tableting process, determine the pharmaceutical performance of excipient like lubricant. This study aims to provide deeper insights to the relationship of the morphology and spatial distribution of stearic acid (SA) with the lubrication efficiency, as well as the resulting tablet property. Unmodified SA particles as flat sheet-like particles were firstly reprocessed by emulsification in hot water to obtain the reprocessed SA particles with spherical morphology. The three-dimensional (3D) information of SA particles in tablets was detected by a quantitative and non-invasive 3D structure elucidation technique, namely, synchrotron radiation X-ray micro-computed tomography (SR-µCT). SA particles in glipizide tablets prepared by using unmodified SA (GUT), reprocessed SA (GRT), as well as reference listed drug (RLD) of glipizide tablets were analyzed by SR-µCT. The results showed that the reprocessed SA with better flowability contributed to similarity of breaking forces between that of GRT and RLD. SA particles in GRT were very similar to those in RLD with uniform morphology and particle size, while SA particles in GUT were not evenly distributed. These findings not only demonstrated the feasibility of SR-µCT as a new method in revealing the morphology and spatial distribution of excipient in drug delivery system, but also deepened insights of solid dosage form design into a new scale by powder engineering.

4.
Sci Total Environ ; 703: 135675, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31771844

RESUMEN

Over the last decades, many studies have been conducted on rocks containing Naturally Occurring Asbestos (NOA) to determine the potential health risks to exposed neighboring populations. It is difficult to accurately characterize the asbestos fibres contained within the rocks as conventional techniques are not effective and have drawbacks associated with the disturbance of the sample under study. X-ray synchrotron microtomography (SR-µCT) supplemented with polarized light microscope (PLM), scanning electron microscopy analysis combined with energy dispersive spectrometry (SEM/EDS), electron probe micro-analysis (EPMA) were used for identifying asbestos fibres in a mineral matrix. As a case study, we analyzed a representative set of veins and fibrous chrysotile that fills the veins, taken from massive serpentinite outcrops (Southern-Italy). We were able to identify respirable chrysotile fibres (regulated asbestos) within the serpentinite matrix. SR-µCT of NOA veins achieved the resolution and reconstructed 3D structures of infill chrysotile asbestos fibres and other phase structures that were not resolvable with PLM, SEM or EPMA. Moreover, due to differences in chemical composition between veins and matrix, the data obtained enabled us to evaluate the vein shapes present in the massive serpentinite matrix. In particular, iron and aluminum distribution variations between veins and matrix induce different radiation absorption patterns thus permitting a detailed image-based 3D geometric reconstruction. The advantages of the SR-µCT technique as well as limitation of conventional methods are also discussed. These analytical approaches will be used for conducting future research on NOA of other minerals, which exhibit asbestiform and non-asbestiform habits within veins, including asbestos amphiboles.

5.
Bone ; 120: 439-445, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30553853

RESUMEN

OBJECTIVE: To determine the agreement between cortical porosity derived from high resolution peripheral quantitative computed tomography (HR-pQCT) (via standard threshold, mean density and density inhomogeneity methods) and synchrotron radiation micro-CT (SR-µCT) derived porosity at the distal radius. METHODS: We scanned 10 cadaveric radii (mean donor age: 79, SD 11 years) at the standard distal region using HR-pQCT and SR-µCT at voxel sizes of 82 µm and 17.7 µm, respectively. Common cortical regions were delineated for each specimen in both imaging modalities. HR-pQCT images were analyzed for cortical porosity using the following methods: Standard threshold, mean density, and density inhomogeneity (via recommended and optimized equations). We assessed agreement in porosity measures between HR-pQCT methods and SR-µCT by reporting predicted variance from linear regression and mean bias with limits of agreement (LOA). RESULTS: The standard threshold and mean density methods predicted 85% and 89% of variance and indicated underestimation (mean bias -9.1%, LOA -15.9% to -2.2%) and overestimation (10.4%, 4.6% to 16.2%) of porosity, respectively. The density inhomogeneity method with recommended equation predicted 89% of variance and mean bias of 14.9% (-4.3 to 34.2) with systematic over-estimation of porosity in more porous specimens. The density inhomogeneity method with optimized equation predicted 91% of variance without bias (0.0%, -5.3 to 5.2). CONCLUSION: HR-pQCT imaged porosity assessed with the density inhomogeneity method with optimized equation indicated the best agreement with SR-µCT derived porosity.


Asunto(s)
Hueso Cortical/diagnóstico por imagen , Radiación , Radio (Anatomía)/diagnóstico por imagen , Sincrotrones , Microtomografía por Rayos X , Anciano , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Lineales , Masculino , Porosidad
6.
J Microsc ; 270(3): 343-358, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29469207

RESUMEN

Non-invasive imaging techniques like X-ray computed tomography have become very popular in zoology, as they allow for simultaneous imaging of the internal and external morphology of organisms. Nevertheless, the effect of different staining approaches required for this method on samples lacking mineralized tissues, such as soft-bodied invertebrates, remains understudied. Herein, we used synchrotron radiation-based X-ray micro-computed tomography to compare the effects of commonly used contrasting approaches on onychophorans - soft-bodied invertebrates important for studying animal evolution. Representatives of Euperipatoides rowelli were stained with osmium tetroxide (vapour or solution), ruthenium red, phosphotungstic acid, or iodine. Unstained specimens were imaged using both standard attenuation-based and differential phase-contrast setups to simulate analyses with museum material. Our comparative qualitative analyses of several tissue types demonstrate that osmium tetroxide provides the best overall tissue contrast in onychophorans, whereas the remaining staining agents rather favour the visualisation of specific tissues and/or structures. Quantitative analyses using signal-to-noise ratio measurements show that the level of image noise may vary according to the staining agent and scanning medium selected. Furthermore, box-and-whisker plots revealed substantial overlap in grey values among structures in all datasets, suggesting that a combination of semiautomatic and manual segmentation of structures is required for comprehensive 3D reconstructions of Onychophora, irrespective of the approach selected. Our results show that X-ray micro-computed tomography is a promising technique for studying onychophorans and, despite the benefits and disadvantages of different staining agents for specific tissues/structures, this method retrieves informative data that may eventually help address evolutionary questions long associated with Onychophora.


Asunto(s)
Helmintos/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Coloración y Etiquetado/métodos , Microtomografía por Rayos X/métodos , Animales , Yodo/metabolismo , Tetróxido de Osmio/metabolismo , Ácido Fosfotúngstico/metabolismo , Rojo de Rutenio/metabolismo
7.
J Orthop Res ; 34(10): 1697-1706, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26833973

RESUMEN

The purpose of this study was to explore the effect of low-intensity pulsed ultrasound (LIPUS) treatment initiating after inflammation stage on the process of bone-tendon junction (BTJ) healing in a rabbit model. Thirty-six rabbits undergoing partial patellectomy were randomly divided into two groups: control and LIPUS. The period of initial inflammatory stage is 2 weeks. So LIPUS treatment was initiated at postoperative week 2 and continued until the patella-patellar tendon (PPT) complexes were harvested at postoperative weeks 4, 8, and 16. At each time point, the PPT complexes were harvested for qRT-PCR, histology, radiographs, synchroton radiation micro computed tomography (SR-µCT), and biomechanical testing. The qRT-PCR results showed that LIPUS treatment beginning at postoperative week 2 played an anti-inflammatory role in BTJ healing. Histologically, the LIPUS group showed more advanced remodeling of the lamellar bone and marrow cavity than the control group. The area and length of the new bone in the LIPUS group were significantly greater than the control group at postoperative weeks 8 and 16. SR-µCT demonstrated that new bone formation and remodeling in the LIPUS group were more advanced than the control group. Biomechanical test results demonstrated that the failure load, ultimate strength and energy at failure were significantly higher than those of the control group. In conclusion, LIPUS treatment beginning at postoperative week 2 was able to accelerate bone formation during the bone-tendon junction healing process and significantly improved the healing quality of BTJ injury. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1697-1706, 2016.


Asunto(s)
Injertos Hueso-Tendón Rotuliano-Hueso/efectos de la radiación , Regeneración/efectos de la radiación , Ondas Ultrasónicas , Animales , Fenómenos Biomecánicos , Huesos/efectos de la radiación , Femenino , Reacción en Cadena de la Polimerasa , Conejos , Distribución Aleatoria , Tendones/efectos de la radiación , Microtomografía por Rayos X
8.
Arthropod Struct Dev ; 43(1): 63-75, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24184600

RESUMEN

The external and internal anatomy of millipedes (Diplopoda) is poorly known compared to some of the other myriapod and arthropod groups. Due to both language barriers, which hindered the assessment of the character-rich older literature, and non-phylogenetic thinking, our knowledge of morphological characters useful for phylogenetic work diminished over the last decades. Here, a new character matrix with 64 characters, mainly derived from old literature data, is used to reconstruct a phylogeny of Diplopoda. As a tool to further our knowledge about the morphology of the different millipede orders, we show how micro-computer tomography (µCT) can be used to assess and illustrate specific parts of the Platydesmida. With the advent of µCT it is now possible to analyse many taxa and characters in a comparatively short time. A focus is put on potential phylogenetically useful characters. Our results support a Verhoeffian classification of the Diplopoda: Polyxenida + Chilognatha. Pentazonia are the sistergroup to the Helminthomorpha. Colobognatha form the sistergroup to Eugnatha, the latter split into monophyletic Juliformia and Polydesmida + Nematophora.


Asunto(s)
Artrópodos/anatomía & histología , Artrópodos/clasificación , Filogenia , Animales , Artrópodos/crecimiento & desarrollo , Femenino , Cabeza/anatomía & histología , Procesamiento de Imagen Asistido por Computador , Larva , Masculino , Sincrotrones , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA