Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 111: 117869, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39126834

RESUMEN

Recently, the sortilin receptor (SORT1) was found to be preferentially over-expressed on the surface of many cancer cells, which makes SORT1 a novel anticancer target. The SORT1 binding proprietary peptide TH19P01 could achieve the SORT1-mediated cancer cell binding and subsequent internalization. Inspired by the peptide-drug conjugate (PDC) strategy, the TH19P01-camptothecin (CPT) conjugates were designed, efficiently synthesized, and evaluated for their anticancer potential in this study. The water solubility, in vitro anticancer activity, time-kill kinetics, cellular uptake, anti-migration activity, and hemolysis effects were systematically estimated. Besides, in order to monitor the release of CPT from conjugates in real-time, the CPT/Dnp-based "turn on" hybrid peptide was designed, which indicted that CPT could be sustainably released from the hybrid peptide in both human serum and cancer cellular environments. Strikingly, compared with free CPT, the water solubility, cellular uptake, and selectivity towards cancer cells of hybrid peptide LYJ-2 have all been significantly enhanced. Moreover, unlike free CPT or TH19P01, LYJ-2 exhibited selective anti-proliferative and anti-migration effects against SORT1-positive MDA-MB-231 cells. Collectively, this study not only established efficient strategies to improve the solubility and anticancer potential of chemotherapeutic agent CPT, but also provided important references for the future development of TH19P01 based PDCs targeting SORT1.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Antineoplásicos , Camptotecina , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Camptotecina/farmacología , Camptotecina/química , Camptotecina/síntesis química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Movimiento Celular/efectos de los fármacos
2.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892071

RESUMEN

Peptides displaying antimicrobial properties are being regarded as useful tools to evade and combat antimicrobial resistance, a major public health challenge. Here we have addressed dendrimers, attractive molecules in pharmaceutical innovation and development displaying broad biological activity. Triazine-based dendrimers were fully synthesized in the solid phase, and their antimicrobial activity and some insights into their mechanisms of action were explored. Triazine is present in a large number of compounds with highly diverse biological targets with broad biological activities and could be an excellent branching unit to accommodate peptides. Our results show that the novel peptide dendrimers synthesized have remarkable antimicrobial activity against Gram-negative bacteria (E. coli and P. aeruginosa) and suggest that they may be useful in neutralizing the effect of efflux machinery on resistance.


Asunto(s)
Dendrímeros , Escherichia coli , Pruebas de Sensibilidad Microbiana , Triazinas , Dendrímeros/química , Dendrímeros/síntesis química , Dendrímeros/farmacología , Triazinas/química , Triazinas/farmacología , Triazinas/síntesis química , Escherichia coli/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/síntesis química
3.
Bioorg Med Chem ; 107: 117760, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38762978

RESUMEN

Oncolytic peptides represented potential novel candidates for anticancer treatments especially drug-resistant cancer cell lines. One of the most promising and extensively studied is LTX-315, which is considered as the first in class oncolytic peptide and has entered phase I/II clinical trials. Nevertheless, the shortcomings including poor proteolytic stability, moderate anticancer durability and high synthesis costs may hinder the widespread clinical applications of LTX-315. In order to reduce the synthesis costs, as well as develop derivatives possessing both high protease-stability and durable anticancer efficiency, twenty LTX-315-based derived-peptides were designed and efficiently synthesized. Especially, through solid-phase S-alkylation, as well as the optimized peptide cleavage condition, the derived peptides could be prepared with drastically reduced synthesis cost. The in vitro anticancer efficiency, serum stability, anticancer durability, anti-migration activity, and hemolysis effect were systematically investigated. It was found that derived peptide MS-13 exhibited comparable anticancer efficiency and durability to those of LTX-315. Strikingly, the D-type peptide MS-20, which is the enantiomer of MS-13, was demonstrated to possess significantly high proteolytic stability and sustained anticancer durability. In general, the cost-effective synthesis and stability-guided structural optimizations were conducted on LTX-315, affording the highly hydrolysis resistant MS-20 which possessed durable anticancer activity. Meanwhile, this study also provided a reliable reference for the future optimization of anticancer peptides through the solid-phase S-alkylation and L-type to D-type amino acid substitutions.


Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Movimiento Celular/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Hemólisis/efectos de los fármacos , Oligopéptidos
4.
Chemistry ; 30(49): e202400667, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38647356

RESUMEN

We previously described NMR based fingerprint matching with peptide backbone resonances as a fast and reliable structural dereplication approach for Pseudomonas cyclic lipodepsipeptides (CLiPs). In combination with total synthesis of a small library of configurational CLiP congeners this also allows unambiguous determination of stereochemistry, facilitating structure-activity relationship studies and enabling three-dimensional structure determination. However, the on-resin macrocycle formation in the synthetic workflow brings considerable burden and limits universal applicability. This drawback is here removed altogether by also transforming the native CLiP into a linearized analogue by controlled saponification of the ester bond. This eliminates the need for macrocycle formation, limiting the synthesis effort to linear peptide analogues. NMR fingerprints of such linear peptide analogues display a sufficiently distinctive chemical shift fingerprint to act as effective discriminators. The approach is developed using viscosin group CLiPs and subsequently demonstrated on putisolvin, leading to a structural revision, and tanniamide from Pseudomonas ekonensis COR58, a newly isolated lipododecapeptide that defines a new group characterized by a ten-residue large macrocycle, the largest to date in the Pseudomonas CLiP portfolio. These examples demonstrate the effectiveness of the saponification- enhanced approach that broadens applicability of NMR fingerprint matching for the determination of the stereochemistry of CLiPs.


Asunto(s)
Depsipéptidos , Péptidos Cíclicos , Pseudomonas , Estereoisomerismo , Pseudomonas/química , Depsipéptidos/química , Péptidos Cíclicos/química , Espectroscopía de Resonancia Magnética/métodos , Relación Estructura-Actividad , Productos Biológicos/química
5.
Molecules ; 29(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611709

RESUMEN

Solid-phase peptide synthesis (SPPS) is the preferred strategy for synthesizing most peptides for research purposes and on a multi-kilogram scale. One key to the success of SPPS is the continual evolution and improvement of the original method proposed by Merrifield. Over the years, this approach has been enhanced with the introduction of new solid supports, protecting groups for amino acids, coupling reagents, and other tools. One of these improvements is the use of the so-called "safety-catch" linkers/resins. The linker is understood as the moiety that links the peptide to the solid support and protects the C-terminal carboxylic group. The "safety-catch" concept relies on linkers that are totally stable under the conditions needed for both α-amino and side-chain deprotection that, at the end of synthesis, can be made labile to one of those conditions by a simple chemical reaction (e.g., an alkylation). This unique characteristic enables the simultaneous use of two primary protecting strategies: tert-butoxycarbonyl (Boc) and fluorenylmethoxycarbonyl (Fmoc). Ultimately, at the end of synthesis, either acids (which are incompatible with Boc) or bases (which are incompatible with Fmoc) can be employed to cleave the peptide from the resin. This review focuses on the most significant "safety-catch" linkers.


Asunto(s)
Antifibrinolíticos , Técnicas de Síntesis en Fase Sólida , Alquilación , Aminoácidos , Resinas de Plantas , Péptidos
6.
ChemMedChem ; 19(13): e202300692, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38572578

RESUMEN

Glycosylation is one of the most ubiquitous post-translational modifications. It affects the structure and function of peptides/proteins and consequently has a significant impact on various biological events. However, the structural complexity and heterogeneity of glycopeptides/proteins caused by the diversity of glycan structures and glycosylation sites complicates the detailed elucidation of glycan function and hampers their clinical applications. To address these challenges, chemical and/or enzyme-assisted synthesis methods have been developed to realize glycopeptides/proteins with well-defined glycan morphologies. In particular, N-glycans are expected to be useful for improving the solubility, in vivo half-life and aggregation of bioactive peptides/proteins that have had limited clinical applications so far due to their short duration of action in the blood and unsuitable physicochemical properties. Chemical glycosylation performed in a post-synthetic procedure can be used to facilitate the development of glycopeptide/protein analogues or mimetics that are superior to the original molecules in terms of physicochemical and pharmacokinetic properties. N-glycans are used to modify targets because they are highly biodegradable and biocompatible and have structures that already exist in the human body. On the practical side, from a quality control perspective, close attention should be paid to their structural homogeneity when they are to be applied to pharmaceuticals.


Asunto(s)
Polisacáridos , Polisacáridos/química , Polisacáridos/síntesis química , Humanos , Glicosilación , Péptidos/química , Péptidos/síntesis química , Proteínas/química , Proteínas/síntesis química , Proteínas/metabolismo , Glicopéptidos/síntesis química , Glicopéptidos/química
7.
Molecules ; 29(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542953

RESUMEN

The international peptide community rejoiced when one of its most distinguished members, Morten Meldal of Denmark, shared the 2022 Nobel Prize in Chemistry. In fact, the regiospecific solid-phase "copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides" (CuACC) reaction-that formed the specific basis for Meldal's recognition-was reported first at the 17th American Peptide Symposium held in San Diego in June 2001. The present perspective outlines intertwining conceptual and experimental threads pursued concurrently in Copenhagen and Minneapolis, sometimes by the same individuals, that provided context for Meldal's breakthrough discovery. Major topics covered include orthogonality in chemistry; the dithiasuccinoyl (Dts) protecting group for amino groups in α-amino acids, carbohydrates, and monomers for peptide nucleic acids (PNA); and poly(ethylene glycol) (PEG)-based solid supports such as PEG-PS, PEGA, and CLEAR [and variations inspired by them] for solid-phase peptide synthesis (SPPS), solid-phase organic synthesis (SPOS), and combinatorial chemistry that can support biological assays in aqueous media.


Asunto(s)
Ácidos Nucleicos de Péptidos , Péptidos , Humanos , Péptidos/química , Ácidos Nucleicos de Péptidos/química , Aminoácidos , Azidas/química , Alquinos/química , Química Clic
8.
J Pept Sci ; 30(4): e3555, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38220145

RESUMEN

Newer solid-phase peptide synthesis and release strategies enable the production of short peptides with high purity, allowing direct screening for desired bioactivity without prior chromatographic purification. However, the maximum number of peptides that can currently be synthesized per microplate reactor is 96, allowing the parallel synthesis of 384 peptides in modern devices that have space for 4 microplate reactors. To synthesize larger numbers of peptides, we modified a commercially available peptide synthesizer to enable the production of peptides in 384-well plates, which allows the synthesis of 1,536 peptides in one run (4 × 384 peptides). We report new hardware components and customized software that allowed for the synthesis of 1,536 short peptides in good quantity (average > 0.5 µmol), at high concentration (average > 10 mM), and decent purity without purification (average > 80%). The high-throughput peptide synthesis, which we developed with peptide drug development in mind, may be widely used for peptide library synthesis and screening, antibody epitope scanning, epitope mimetic development, or protease/kinase substrate screening.


Asunto(s)
Técnicas Químicas Combinatorias , Técnicas de Síntesis en Fase Sólida , Técnicas Químicas Combinatorias/métodos , Biblioteca de Péptidos , Péptidos/química , Epítopos
9.
Small Methods ; 8(1): e2301086, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37806766

RESUMEN

A transportable reversible assembly of gold nanoparticles (AuNPs) in an aqueous environment addresses the need for in situ surafce-enhanced Raman spectroscopy (SERS) hotspot creation for biological applications. Usually, light-directed AuNP assembly methods use higher laser powers and surfactants and are, hence, unsuitable for biological applications. Here, surface plasmon polaritons-assisted dynamic assembly of AuNPs are demonstrated at laser power density as low as 100 nW µm-2 . The AuNP assembly with multiple controllable hotspots is generated in an Au-water interface for solution-based SERS measurements. The major advantage of the method is that the interparticle nanogap is tunable to achieve analyte and AuNP-specific optimum SERS enhancement. The SERS intensity is reproducible on multiple reassembly cycles and assembly attempts, proving repeatability in the produced nanogap pattern. The assembly experiments reveal the influence of AuNP surface charge and the resulting polarizability on the SPP forces. The developed system and method can detect sulforhodamine 101 (SR101) dye molecules at concentrations as low as 10-10  m. Further, the SERS measurements on double-stranded DNA suggest that the molecules are oriented in a fashion to expose adenosine to the enhanced field, leading to its dominance in the recorded spectra.

10.
Molecules ; 28(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38067510

RESUMEN

Arginine, due to the guanidine moiety, increases peptides' hydrophilicity and enables interactions with charged molecules, but at the same time, its presence in a peptide chain might reduce its permeability through biological membranes. This might be resolved by temporary coverage of the peptide charge by lipophilic, enzyme-sensitive alkoxycarbonyl groups. Unfortunately, such a modification of a guanidine moiety has not been reported to date and turned out to be challenging. Here, we present a new, optimized strategy to obtain arginine building blocks with increased lipophilicity that were successfully utilized in the solid-phase peptide synthesis of novel arginine vasopressin prodrugs.


Asunto(s)
Arginina , Técnicas de Síntesis en Fase Sólida , Arginina/química , Péptidos/química , Guanidinas
11.
Micromachines (Basel) ; 14(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38138336

RESUMEN

In this paper, a long-range hybrid waveguide for subwavelength confinement based on double SPP coupling is proposed. The hybrid waveguide consists of a metal-based cylindrical hybrid waveguide and a silver nanowire. There are two coupling regions in the waveguide structure that enhance mode coupling. Strong mode coupling enables the waveguide to exhibit both a small effective mode area (0.01) and an extremely long transmission length (700 µm). The figure of merit (FOM) of the waveguide can be as high as 4000. In addition, the cross-sectional area of the waveguide is only 500 nm × 500 nm, allowing optical operation in the subwavelength range, which helps enhance the miniaturization of optoelectronic devices. The excellent characteristics of the hybrid waveguide make it have potential applications in photoelectric integrated systems.

12.
Adv Mater ; : e2303001, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031315

RESUMEN

Localized surface plasmon resonance (LSPR) excited by an incident light can normally produce strong surface-enhanced Raman scattering (SERS) at the nanogaps among plasmonic nano-objects (so-called hot spots), which is extensively explored. In contrast, surface plasmon polaritons (SPPs) that can be generated by an incident beam via particular structures with a conservation of wave vectors can excite SERS effects as well. SPPs actually play an indispensable role in high-performance SERS devices but receive much less attention. In this perspective, SPPs and their couplings with LSPR for SERS excitations with differing effectiveness through particular plasmonic/dielectric structures/configurations, along with relevant fabrication approaches, are profoundly reviewed and commented on from a unique perspective from in situ to ex situ excitations of SERS enabled by spatiotemporally separated multiple processes of SPPs. Quantitative design of particular configurations/architectures enabling highly efficient and effective multiple processes of SPPs is particularly emphasized as one giant leap toward ultimate full quantitative design of intrinsically high-performance SERS chips and very critical for their batch manufacturability and applications as well. The viewpoints and prospects about innovative SERS devices based on tailored structure-dominated SPPs effects and their coupling with LSPR are presented and discussed.

13.
Bioorg Chem ; 138: 106674, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37331169

RESUMEN

Nitrogen mustards (NMs) are an important class of chemotherapeutic drugs and have been widely employed for the treatment of various cancers. However, due to the high reactivity of nitrogen mustard, most NMs react with proteins and phospholipids within the cell membrane. Therefore, only a very small fraction of NMs can reach the reach nucleus, alkylating and cross-linking DNA. To efficiently penetrate the cell membrane barrier, the hybridization of NMs with a membranolytic agent may be an effective strategy. Herein, the chlorambucil (CLB, a kind of NM) hybrids were first designed by conjugation with membranolytic peptide LTX-315. However, although LTX-315 could help large amounts of CLB penetrate the cytomembrane and enter the cytoplasm, CLB still did not readily reach the nucleus. Our previous work demonstrated that the hybrid peptide NTP-385 obtained by covalent conjugation of rhodamine B with LTX-315 could accumulate in the nucleus. Hence, the NTP-385-CLB conjugate, named FXY-3, was then designed and systematically evaluated both in vitro and in vivo. FXY-3 displayed prominent localization in the cancer cell nucleus and induced severe DNA double-strand breaks (DSBs) to trigger cell apoptosis. Especially, compared with CLB and LTX-315, FXY-3 exhibited significantly increased in vitro cytotoxicity against a panel of cancer cell lines. Moreover, FXY-3 showed superior in vivo anticancer efficiency in the mouse cancer model. Collectively, this study established an effective strategy to increase the anticancer activity and the nuclear accumulation of NMs, which will provide a valuable reference for future nucleus-targeting modification of nitrogen mustards.


Asunto(s)
Neoplasias , Compuestos de Mostaza Nitrogenada , Animales , Ratones , Clorambucilo/farmacología , ADN/metabolismo , Nitrógeno , Compuestos de Mostaza Nitrogenada/farmacología , Péptidos/farmacología
14.
Sensors (Basel) ; 23(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37299799

RESUMEN

A fixed-frequency beam-scanning leaky-wave antenna (LWA) array with three switchable dual-polarized beams is proposed and experimentally demonstrated. The proposed LWA array consists of three groups of spoof surface plasmon polaritons (SPPs) LWAs with different modulation period lengths and a control circuit. Each group of SPPs LWAs can independently control the beam steering at a fixed frequency by loading varactor diodes. The proposed antenna can be configured in both multi-beam mode and single-beam mode, where the multi-beam mode with optional two or three dual-polarized beams. The beam width can be flexibly adjusted from narrow to wide by switching between multi-beam and single-beam states. The prototype of the proposed LWA array is fabricated and measured, and both simulation and experimental results show that the antenna can accomplish a fixed frequency beam scanning at an operating frequency of 3.3 to 3.8 GHz with a maximum scanning range of about 35° in multi-beam mode and about 55° in single-beam mode. It could be a promising candidate for application in the space-air-ground integrated network scenario in satellite communication and future 6G communication systems.


Asunto(s)
Comunicaciones por Satélite , Simulación por Computador , Cintigrafía
15.
Molecules ; 28(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36838983

RESUMEN

Antimicrobial peptides (AMPs) hold promise as novel therapeutics in the fight against multi-drug-resistant pathogens. Cathelicidin-PY (NH2-RKCNFLCKLKEKLRTVITSHIDKVLRPQG-COOH) is a 29-residue disulfide-cyclised antimicrobial peptide secreted as an innate host defence mechanism by the frog Paa yunnanensis (PY) and reported to possess broad-spectrum antibacterial and antifungal properties, exhibiting low cytotoxic and low hemolytic activity. Herein, we detail the total synthesis of cathelicidin-PY using an entirely on-resin synthesis, including assembly of the linear sequence by rapid flow Fmoc-SPPS and iodine-mediated disulfide bridge formation. By optimising a synthetic strategy to prepare cathelicidin-PY, this strategy was subsequently adapted to prepare a bicyclic head-to-tail cyclised derivative of cathelicidin-PY. The structure-activity relationship (SAR) of cathelicidin-PY with respect to the N-terminally positioned disulfide was further probed by preparing an alanine-substituted linear analogue and a series of lactam-bridged peptidomimetics implementing side chain to side chain cyclisation. The analogues were investigated for antimicrobial activity, secondary structure by circular dichroism (CD), and stability in human serum. Surprisingly, the disulfide bridge emerged as non-essential to antimicrobial activity and secondary structure but was amenable to synthetic modification. Furthermore, the synthetic AMP and multiple analogues demonstrated selective activity towards Gram-negative pathogen E. coli in physiologically relevant concentrations of divalent cations.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Catelicidinas , Humanos , Catelicidinas/química , Péptidos Catiónicos Antimicrobianos/química , Escherichia coli , Antibacterianos/química , Relación Estructura-Actividad , Disulfuros , Pruebas de Sensibilidad Microbiana
16.
Trends Pharmacol Sci ; 44(3): 134-136, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36669975

RESUMEN

Protein arginine methyltransferase (PRMT)-5 is a prominent epigenetic regulator and therapeutic target. Recently, Krzyzanowski et al. identified stapled peptides that inhibit the interaction of PRMT5 with two of its adaptor proteins. This discovery creates opportunities for novel therapeutic development by selectively modulating PRMT5 activity.


Asunto(s)
Proteína-Arginina N-Metiltransferasas , Humanos , Proteína-Arginina N-Metiltransferasas/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-36593927

RESUMEN

We study for the first time whether triphenylphosphonium (TPP) moiety can improve cellular delivery and redox properties of amphipathic cationic peptides based on YRFK/YrFK cell-penetrating and cytoprotective motif. TPP moiety was found to increase reducing activity of both stereoisomeric peptides in solution and on electrode surface in association with TPP-mediated intramolecular interactions. Among TPP-conjugated peptides, newly synthesized TPP3-YrFK featured both increased antioxidant efficacy and proteolytic resistance. TPP-conjugated peptides preferably mitigated endogenic ROS in mitochondria and cytoplasm of model glioblastoma cells with increased oxidative status. This anti-ROS effect was accompanied by mild reversible decrease of reduced glutathione level in the cells with relatively weak change in glutathione redox forms ratio. Such low interference with cell redox status is in accordance with non-cytotoxic nature of the compounds. Intracellular concentrations of label-free peptides were analyzed by LC-MS/MS, which showed substantial TPP-promoted penetration of YrFK motif across cell plasma membrane. However, according to ΔΨm analysis, TPP moiety did not profoundly enhance peptide interaction with mitochondrial inner membrane. Our study clarifies the role of TPP moiety in cellular delivery of amphipathic cationic oligopeptides. The results suggest TPP moiety as a multi-functional modifier for the oligopeptides which is capable of improving cellular pharmacokinetics and antioxidant activity as well as targeting increased ROS levels. The results encourage further investigation of TPP3-YrFK as a peptide antioxidant with multiple benefits.

18.
Angew Chem Int Ed Engl ; 62(1): e202214053, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36344442

RESUMEN

Chemical synthesis of proteins bearing base-labile post-translational modifications (PTMs) is a challenging task. For instance, O-acetylation and S-palmitoylation PTMs cannot survive Fmoc removal conditions during Fmoc-solid phase peptide synthesis (SPPS). In this work, we developed a new Boc-SPPS-based strategy for the synthesis of peptide C-terminal salicylaldehyde (SAL) esters, which are the key reaction partner in Ser/Thr ligation and Cys/Pen ligation. The strategy utilized the semicarbazone-modified aminomethyl (AM) resin, which could support the Boc-SPPS and release the peptide SAL ester upon treatment with TFA/H2 O and pyruvic acid. The non-oxidative aldehyde regeneration was fully compatible with all the canonical amino acids. Armed with this strategy, we finished the syntheses of the O-acetylated protein histone H3(S10ac, T22ac) and the hydrophobic S-palmitoylated peptide derived from caveolin-1.


Asunto(s)
Péptidos , Proteínas , Péptidos/química , Aldehídos , Ésteres/química
19.
Sensors (Basel) ; 22(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36236589

RESUMEN

In order to obtain optimized elementary devices (photovoltaic modules, power transistors for energy efficiency, high-efficiency sensors) it is necessary to increase the energy conversion efficiency of these devices. A very effective approach to achieving this goal is to increase the absorption of incident radiation. A promising strategy to increase this absorption is to use very thin regions of active material and trap photons near these surfaces. The most effective and cost-effective method of achieving such optical entrapment is the Raman scattering from excited nanoparticles at the plasmonic resonance. The field of plasmonics is the study of the exploitation of appropriate layers of metal nanoparticles to increase the intensity of radiation in the semiconductor by means of near-field effects produced by nanoparticles. In this paper, we focus on the use of metal nanoparticles as plasmonic nanosensors with extremely high sensitivity, even reaching single-molecule detection. The study conducted in this paper was used to optimize the performance of a prototype of a plasmonic photovoltaic cell made at the Institute for Microelectronics and Microsystems IMM of Catania, Italy. This prototype was based on a multilayer structure composed of the following layers: glass, AZO, metal and dielectric. In order to obtain good results, it is necessary to use geometries that orthogonalize the absorption of light, allowing better transport of the photocarriers-and therefore greater efficiency-or the use of less pure materials. For this reason, this study is focused on optimizing the geometries of these multilayer plasmonic structures. More specifically, in this paper, by means of a neurocomputing procedure and an electromagnetic fields analysis performed by the finite elements method (FEM), we established the relationship between the thicknesses of Aluminum-doped Zinc oxide (AZO), metal, dielectric and their main properties, characterizing the plasmonic propagation phenomena as the optimal wavelengths values at the main interfaces AZO/METAL and METAL/DIELECTRIC.

20.
J Pept Sci ; 28(12): e3441, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35785412

RESUMEN

As peptides gained interest as new drugs in the past years, their synthetic routes had been the subject of review and improvement. Fmoc/tBu-based solid-phase peptide synthesis (SPPS) is the most convenient technique, and the implementation in continuous flow has allowed for single-pass coupling and deprotection reactions. The focus of this research is to evaluate the relationship between undesired solvent-promoted reactions and final crude purity, by studying volume changes of a variable bed flow reactor through the synthesis. Based on the temperature, typical solvents for SPPS such as dimethylformamide (DMF) or N-methyl-2-pyrrolidone (NMP) can cause unwanted Fmoc removal during wash steps. It was found that for every millilitre of DMF used at 80°C, up to 1 µmol of Fmoc-protected peptide is deprotected, leading to additional impurities. This effect can, however, be minimised by adding additives such as HOBt, which reduces such unwanted deprotection to just 0.1 µmol/ml.


Asunto(s)
Péptidos , Técnicas de Síntesis en Fase Sólida , Técnicas de Síntesis en Fase Sólida/métodos , Dimetilformamida , Solventes , Fluorenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA