Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Mol Biol Rep ; 51(1): 980, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269510

RESUMEN

Superoxide dismutase 3 (SOD3) is a type of antioxidant enzyme, which plays an important role in converting superoxide anion into hydrogen peroxide through its extracellular activity. This enzyme has been widely studied and evaluated from various points of view, including maintaining cellular redox balance, protecting against oxidative damage, and enhancing overall cellular resilience. The current paper focuses on SOD3 expression from a functional perspective. In addition to a detailed examination of the gene and protein structure, we found ample evidence indicating that the expression level of SOD3 undergoes alterations in response to various transcription factors, signaling pathways, and diverse conditions. These fluctuations, by disrupting the homeostasis of SOD3, can serve as crucial indicators of the onset or exacerbation of specific diseases. In this regard, significant efforts have been dedicated in recent years to the treatment of diseases through the regulation of SOD3 expression. The ultimate goal of this review is to extensively highlight and demonstrate the immense potential of SOD3 as a therapeutic target, emphasizing its profound impact on health outcomes.


Asunto(s)
Superóxido Dismutasa , Humanos , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Animales , Estrés Oxidativo/genética , Transducción de Señal/genética , Oxidación-Reducción , Antioxidantes/metabolismo
2.
Int J Mol Sci ; 25(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38892326

RESUMEN

The occurrence of ovarian dysfunction is often due to the imbalance between the formation of reactive oxygen species (ROS) and the ineffectiveness of the antioxidative defense mechanisms. Primary sources of ROS are respiratory electron transfer and the activity of NADPH oxidases (NOX) while superoxide dismutases (SOD) are the main key regulators that control the levels of ROS and reactive nitrogen species intra- and extracellularly. Because of their central role SODs are the subject of research on human ovarian dysfunction but sample acquisition is low. The high degree of cellular and molecular similarity between Drosophila melanogaster ovaries and human ovaries provides this model organism with the best conditions for analyzing the role of ROS during ovarian function. In this study we clarify the localization of the ROS-producing enzyme dNox within the ovaries of Drosophila melanogaster and by a tissue-specific knockdown we show that dNox-derived ROS are involved in the chorion hardening process. Furthermore, we analyze the dSod3 localization and show that reduced activity of dSod3 impacts egg-laying behavior but not the chorion hardening process.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Ovario , Especies Reactivas de Oxígeno , Superóxido Dismutasa , Animales , Drosophila melanogaster/genética , Femenino , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ovario/metabolismo , NADPH Oxidasas/metabolismo , NADPH Oxidasas/genética , Reproducción , NADPH Oxidasa 5/metabolismo , NADPH Oxidasa 5/genética , Oviposición , Corion/metabolismo
3.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892099

RESUMEN

Global warming has caused such problems as the poor coloration of grape skin and the decreased production of high-quality berries. We investigated the effect of synephrine (Syn) on anthocyanin accumulation. Anthocyanin accumulation in cultured grape cells treated with Syn at concentrations of 1 mM or higher showed no significant difference, indicating that the accumulation was concentration-independent. On the other hand, anthocyanin accumulation was dependent on the compound used for treatment. The sugar/acid ratio of the juice from berries treated with Syn did not differ from the control. The expression of anthocyanin-biosynthesis-related genes, but not phytohormones, was increased by the treatment with Syn at 24 h or later. The Syn treatment of cultured cells increased SOD3 expression and hydrogen peroxide (H2O2) production from 3 to 24 h after treatment. Subsequently, the expression of CAT and APX6 encoding H2O2-scavenging enzymes was also increased. Treatment of cultured cells with Syn and H2O2 increased the expression of the H2O2-responsive gene Chit4 and the anthocyanin-biosynthesis-related genes mybA1 and UFGT 4 days after the treatment and increased anthocyanin accumulation 7 days after the treatment. On the other hand, the treatment of berries with Syn and H2O2 increased anthocyanin accumulation after 9 days. These results suggest that Syn increases anthocyanin accumulation through H2O2 production without changing phytohormone biosynthesis. Syn is expected to improve grape skin coloration and contribute to high-quality berry production.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno , Reguladores del Crecimiento de las Plantas , Sinefrina , Vitis , Peróxido de Hidrógeno/metabolismo , Antocianinas/biosíntesis , Antocianinas/metabolismo , Vitis/metabolismo , Vitis/genética , Vitis/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sinefrina/farmacología , Sinefrina/metabolismo , Frutas/metabolismo , Frutas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
4.
J Nanobiotechnology ; 22(1): 271, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769545

RESUMEN

BACKGROUND AND AIMS: Osteoarthritis (OA) is a prevalent degenerative joint disorder, marked by the progressive degeneration of joint cartilage, synovial inflammation, and subchondral bone hyperplasia. The synovial tissue plays a pivotal role in cartilage regulation. Exosomes (EXOs), small membrane-bound vesicles released by cells into the extracellular space, are crucial in mediating intercellular communication and facilitating the exchange of information between tissues. Our study aimed to devise a hydrogel microsphere infused with SOD3-enriched exosomes (S-EXOs) to protect cartilage and introduce a novel, effective approach for OA treatment. MATERIALS AND METHODS: We analyzed single-cell sequencing data from 4247 cells obtained from the GEO database. Techniques such as PCR, Western Blot, immunofluorescence (IF), and assays to measure oxidative stress levels were employed to validate the cartilage-protective properties of the identified key protein, SOD3. In vivo, OA mice received intra-articular injections of S-EXOs bearing hydrogel microspheres, and the effectiveness was assessed using safranine O (S.O) staining and IF. RESULTS: Single-cell sequencing data analysis suggested that the synovium influences cartilage via the exocrine release of SOD3. Our findings revealed that purified S-EXOs enhanced antioxidant capacity of chondrocytes, and maintained extracellular matrix metabolism stability. The S-EXO group showed a significant reduction in mitoROS and ROS levels by 164.2% (P < 0.0001) and 142.7% (P < 0.0001), respectively, compared to the IL-1ß group. Furthermore, the S-EXO group exhibited increased COL II and ACAN levels, with increments of 2.1-fold (P < 0.0001) and 3.1-fold (P < 0.0001), respectively, over the IL-1ß group. Additionally, the S-EXO group showed a decrease in MMP13 and ADAMTS5 protein expression by 42.3% (P < 0.0001) and 44.4% (P < 0.0001), respectively. It was found that S-EXO-containing hydrogel microspheres could effectively deliver SOD3 to cartilage and significantly mitigate OA progression. The OARSI score in the S-EXO microsphere group markedly decreased (P < 0.0001) compared to the OA group. CONCLUSION: The study demonstrated that the S-EXOs secreted by synovial fibroblasts exert a protective effect on chondrocytes, and microspheres laden with S-EXOs offer a promising therapeutic alternative for OA treatment.


Asunto(s)
Condrocitos , Exosomas , Osteoartritis , Estrés Oxidativo , Superóxido Dismutasa , Membrana Sinovial , Animales , Osteoartritis/terapia , Osteoartritis/metabolismo , Exosomas/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Condrocitos/metabolismo , Humanos , Superóxido Dismutasa/metabolismo , Membrana Sinovial/metabolismo , Masculino , Progresión de la Enfermedad , Nanopartículas/química , Ratones Endogámicos C57BL , Hidrogeles/química , Microesferas , Cartílago Articular/metabolismo , Matriz Extracelular/metabolismo
5.
Antioxidants (Basel) ; 13(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38247543

RESUMEN

ERK1/2 phosphorylation is frequently downregulated in the early phase of colon tumorigenesis with subsequent activation of ERK5. In the current work, we studied the advantages of ERK1/2 downregulation for tumor growth by dissecting the individual functions of ERK1 and ERK2. The patient sample data demonstrated decreased ERK1/2 phosphorylation in the early phase of tumorigenesis followed by increased phosphorylation in late-stage colon adenocarcinomas with intratumoral invasion or metastasis. In vitro results indicated that SOD3-mediated coordination of small GTPase RAS regulatory genes inhibited RAS-ERK1/2 signaling. In vitro and in vivo studies suggested that ERK2 has a more prominent role in chemotactic invasion, collective migration, and cell proliferation than ERK1. Of note, simultaneous ERK1 and ERK2 expression inhibited collective cell migration and proliferation but tended to promote invasion, suggesting that ERK1 controls ERK2 function. According to the present data, phosphorylated ERK1/2 at the early phase of colon adenocarcinoma limits tumor mass expansion, whereas reactivation of the kinases at the later phase of colon carcinogenesis is associated with the initiation of metastasis. Additionally, our results suggest that ERK1 is a regulatory kinase that coordinates ERK2-promoted chemotactic invasion, collective migration, and cell proliferation. Our findings indicate that ROS, especially H2O2, are associated with the regulation of ERK1/2 phosphorylation in colon cancer by either increasing or decreasing kinase activity. These data suggest that ERK2 has a growth-promoting role and ERK1 has a regulatory role in colon tumorigenesis, which could lead to new avenues in the development of cancer therapy.

6.
Clin Immunol ; 258: 109802, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37866784

RESUMEN

Oxidative stress dually affected cancer progression, while its effect on glioblastomas remained unclear. Herein, we clustered the multicenter glioblastoma cohorts based on the oxidative-stress-responsive genes (OSS) expression. We found that cluster 2 with high OSS levels suffered a worse prognosis. Functional analyses and immune-related analyses results exhibited that M2-like pro-tumoral macrophages and neutrophils were enriched in cluster 2, while Natural killer cells' infiltration was decreased. The increased M2-like pro-tumoral macrophages in cluster 2 was confirmed by immunofluorescence. An integrated single-cell analysis validated the malignant features of cluster 2 neoplastic cells and discovered their crosstalk with M2-like pro-tumoral macrophages. Moreover, we observed that SOD3 knockdown might decrease the M2-like pro-tumoral transformation of macrophage in vitro and in vivo. Comprehensively, we revealed oxidative stress' prognostic and immunosuppressive potential in glioblastoma and discovered SOD3's potential role in regulating macrophage M2-like pro-tumoral transformation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Macrófagos , Terapia de Inmunosupresión , Estrés Oxidativo , Microambiente Tumoral
7.
Free Radic Biol Med ; 212: 65-79, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38141889

RESUMEN

Osteoporosis is a chronic disease that seriously affects the quality of life and longevity of the elderly, so exploring the mechanism of osteoporosis is crucial for drug development and treatment. Bone marrow mesenchymal stem cells are stem cells with multiple differentiation potentials in bone marrow, and changing their differentiation direction can change bone mass. As an extracellular superoxide dismutase, Superoxide Dismutase 3 (SOD3) has been proved to play an important role in multiple organs, but the detailed mechanism of action in bone metabolism is still unclear. In this study, the results of clinical serum samples ELISA and single cell sequencing chip analysis proved that the expression of SOD3 was positively correlated with bone mass, and SOD3 was mainly expressed in osteoblasts and adipocytes and rarely expressed in osteoblasts in BMSCs. In vitro experiments showed that SOD3 can promote osteogenesis and inhibit adipogenesis. Compared with WT mice, the mice that were knocked out of SOD3 had a significant decrease in bone mineral density and significant changes in related parameters. The results of HE and IHC staining suggested that knocking out SOD3 would lead to fat accumulation in the bone marrow cavity and weakened osteogenesis. Both in vitro and in vivo experiments indicated that SOD3 affects bone metabolism by promoting osteogenesis and inhibiting adipogenesis. The results of transcriptome sequencing and revalidation showed that SOD3 can affect the expression of FLT1. Through in vitro experiments, we proved that FLT1 can also promote osteogenesis and inhibit adipogenesis. In addition, through the repeated experiments, the interaction between the two molecules (SOD3 and FLT1) was verified again. Finally, it was verified by WB that SOD3 regulates FLT1 to affect bone metabolism through PI3K/AKT and MAPK pathways.


Asunto(s)
Adipogénesis , Osteoporosis , Humanos , Ratones , Animales , Anciano , Adipogénesis/fisiología , Osteogénesis/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Calidad de Vida , Diferenciación Celular/fisiología , Osteoporosis/metabolismo , Osteoblastos/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular
8.
Antioxidants (Basel) ; 12(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37507914

RESUMEN

Unlike skin, oral mucosal wounds are characterized by rapid healing and minimal scarring, attributable to the "enhanced" healing properties of oral mucosal fibroblasts (OMFs). As oxidative stress is increasingly implicated in regulating wound healing outcomes, this study compared oxidative stress biomarker and enzymic antioxidant profiles between patient-matched oral mucosal/skin tissues and OMFs/skin fibroblasts (SFs) to determine whether superior oral mucosal antioxidant capabilities and reduced oxidative stress contributed to these preferential healing properties. Oral mucosa and skin exhibited similar patterns of oxidative protein damage and lipid peroxidation, localized within the lamina propria/dermis and oral/skin epithelia, respectively. SOD1, SOD2, SOD3 and catalase were primarily localized within epithelial tissues overall. However, SOD3 was also widespread within the lamina propria localized to OMFs, vasculature and the extracellular matrix. OMFs were further identified as being more resistant to reactive oxygen species (ROS) generation and oxidative DNA/protein damage than SFs. Despite histological evaluation suggesting that oral mucosa possessed higher SOD3 expression, this was not fully substantiated for all OMFs examined due to inter-patient donor variability. Such findings suggest that enzymic antioxidants have limited roles in mediating privileged wound healing responses in OMFs, implying that other non-enzymic antioxidants could be involved in protecting OMFs from oxidative stress overall.

9.
Antioxidants (Basel) ; 12(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36829913

RESUMEN

Influenza A virus infection induces the production of excessive reactive oxygen species (ROS). Overproduction of ROS can overwhelm the antioxidant defense system, leading to increasing intensive oxidative stress. However, antioxidant defense against oxidative damage induced by influenza A virus infection, and in particular the significance of the SOD3 response in the pathogenesis of influenza virus infection, has not been well characterized. Here, we investigated the potential role of SOD3 in resistance to influenza A virus infection. In this study, SOD3, as an important antioxidant enzyme, was shown to be highly elevated in A549 cells following influenza A virus infection. Furthermore, inhibition of SOD3 impacted viral replication and virulence. We found that SOD3 disrupts IAV replication by impairing the synthesis of vRNA, whereas it did not affect viral ribonucleoprotein nuclear export. In addition, overexpression of SOD3 greatly reduced the levels of ROS caused by influenza A virus infection, regulated the inflammatory response to virus infection by inhibiting the phosphorylation of p65 of the NF-κB signaling pathway, and inhibited virus-induced apoptosis to a certain extent. Taken together, these findings indicate that SOD3 is actively involved in influenza A virus replication. Pharmacological modulation or targeting of SOD3 may pave the way for a novel therapeutic approach to combating influenza A virus infection.

10.
Antioxid Redox Signal ; 38(16-18): 1201-1211, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36606688

RESUMEN

Aims: The anticancer function of superoxide dismutases (SODs) is still controversial. SOD3 is an extracellular superoxide dismutase and contains a single N-glycan chain. The role played by the N-glycosylation of SOD3, as it relates to lung cancer, is poorly understood. For this, we performed the structural and functional analyses of the N-glycan of SOD3 in lung cancer. Results: We report herein that the fucose structure of the N-glycan in SOD3 was increased in the sera of patients with lung cancer. In cell lines of non-small lung cancer cell (NSCLC), we also found a high level of the core fucose structure in the N-glycan of SOD3, as determined by lectin blotting and mass spectrometry analysis. To address the roles of the core fucose structure of SOD3, we generated FUT8 (α1,6-fucosyltransferase) gene knockout A549 cells. Using these cells, we found that the core fucose structure of SOD3 was required for its secretion and enzymatic activity, which contributes to the suppression of cell growth of NSCLC cells. Innovation: The core fucosylation is required for the secretion and enzymatic activity of SOD3, which contributes to anti-tumor functions such as the suppression of cell growth of NSCLC. Conclusion: The N-glycans, especially those with core fucose structures, regulate the anti-tumor functions of SOD3 against NSCLC. Antioxid. Redox Signal. 38, 1201-1211.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Glicosilación , Fucosa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Polisacáridos/química , Polisacáridos/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
11.
Biomedicines ; 10(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36359248

RESUMEN

Tumor angiogenesis is one of the hallmarks of solid tumor development. The progressive tumor cells produce the angiogenic factors and promote tumor angiogenesis. However, how the tumor stromal cells influence tumor vascularization is still unclear. In the present study, we evaluated the effects of oral squamous cell carcinoma (OSCC) stromal cells on tumor vascularization. The tumor stromal cells were isolated from two OSCC patients with different subtypes: low invasive verrucous squamous carcinoma (VSCC) and highly invasive squamous cell carcinoma (SCC) and co-xenografted with the human OSCC cell line (HSC-2) on nude mice. In comparison, the CD34+ vessels in HSC-2+VSCC were larger than in HSC-2+SCC. Interestingly, the vessels in the HSC-2+VSCC expressed vascular endothelial cadherin (VE-cadherin), indicating well-formed vascularization. Our microarray data revealed that the expression of extracellular superoxide dismutase, SOD3 mRNA is higher in VSCC stromal cells than in SCC stromal cells. Moreover, we observed that SOD3 colocalized with VE-cadherin on endothelial cells of low invasive stroma xenograft. These data suggested that SOD3 expression in stromal cells may potentially regulate tumor vascularization in OSCC. Thus, our study suggests the potential interest in SOD3-related vascular integrity for a better OSCC therapeutic strategy.

12.
Neuron ; 110(20): 3288-3301.e8, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36070751

RESUMEN

For many cancer patients, chemotherapy produces untreatable life-long neurologic effects termed chemotherapy-related cognitive impairment (CRCI). We discovered that the chemotherapy methotrexate (MTX) adversely affects oxidative metabolism of non-cancerous choroid plexus (ChP) cells and the cerebrospinal fluid (CSF). We used a ChP-targeted adeno-associated viral (AAV) vector approach in mice to augment CSF levels of the secreted antioxidant SOD3. AAV-SOD3 gene therapy increased oxidative defense capacity of the CSF and prevented MTX-induced lipid peroxidation in the hippocampus. Furthermore, this gene therapy prevented anxiety and deficits in short-term learning and memory caused by MTX. MTX-induced oxidative damage to cultured human cortical neurons and analyses of CSF samples from MTX-treated lymphoma patients demonstrated that MTX diminishes antioxidant capacity of patient CSF. Collectively, our findings motivate the advancement of ChP- and CSF-targeted anti-oxidative prophylactic measures to relieve CRCI.


Asunto(s)
Antioxidantes , Neoplasias , Humanos , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Plexo Coroideo , Metotrexato/toxicidad , Estrés Oxidativo , Hipocampo , Neoplasias/inducido químicamente
13.
Antioxidants (Basel) ; 11(6)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35740095

RESUMEN

End-stage renal disease (ESRD) patients experience oxidative stress due to excess exogenous or endogenous oxidants and insufficient antioxidants. Hence, oxidative stress and inflammation cause endothelial damage, contributing to vascular dysfunction and atherosclerosis. Therefore, ESRD patients suffer more cardiovascular and hospitalization events than healthy people. This study aims to test the correlations between ROS, SOD3, IL-2, IL-6, and IL-18 and the first kidney disease-related hospitalization or death events in ESRD patients undergoing regular hemodialysis. A total of 212 participants was enrolled, including 45 normal healthy adults and 167 ESRD patients on regular dialysis. Blood samples from all participants were collected for ROS, SOD3, IL-2, IL-6, and IL-18 measurement at the beginning of the study, and every kidney disease-related admission or death was recorded for the next year. Multivariate analysis was conducted by fitting a linear regression model, logistic regression model, and Cox proportional hazards model to estimate the adjusted effects of risk factors, prognostic factors, or predictors on continuous, binary, and survival outcome data. The results showed that plasma SOD3 and serum IL-18 were two strong predictors of the first kidney disease-related hospitalization or death. In the Cox proportional hazards models (run in R), higher IL-18 concentration (>69.054 pg/mL) was associated with a hazard ratio of 3.376 for the first kidney disease-related hospitalization or death (95% CI: 1.2644 to 9.012), while log(SOD3) < 4.723 and dialysis clearance (Kt/V; 1.11 < value < 1.869) had a hazard ratio = 0.2730 (95% CI: 0.1133 to 0.6576) for reducing future kidney disease-related hospitalization or death. Other markers, including body mass index (BMI), transferrin saturation, total iron binding capacity, and sodium and alkaline phosphate, were also found to be significant in our study. These results reveal the new predictors SOD3 and IL-18 for the medical care of end-stage renal disease patients.

14.
Free Radic Biol Med ; 188: 175-184, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35724853

RESUMEN

OBJECTIVE: Determine if oxidative damage increases in articular cartilage as a result of injury and matrix failure and whether modulation of the local redox environment influences this damage. Osteoarthritis is an age associated disease with no current disease modifying approaches available. Mechanisms of cartilage damage in vitro suggest tissue free radical production could be critical to early degeneration, but these mechanisms have not been described in intact tissue. To assess free radical production as a result of traumatic injury, we measured biomolecular free radical generation via immuno-spin trapping (IST) of protein/proteoglycan/lipid free radicals after a 2 J/cm2 impact to swine articular cartilage explants. This technique allows visualization of free radical formation upon a wide variety of molecules using formalin-fixed, paraffin-embedded approaches. Scoring of extracellular staining by trained, blinded scorers demonstrated significant increases with impact injury, particularly at sites of cartilage cracking. Increases remain in the absence of live chondrocytes but are diminished; thus, they appear to be a cell-dependent and -independent feature of injury. We then modulated the extracellular environment with a pulse of heparin to demonstrate the responsiveness of the IST signal to changes in cartilage biology. Addition of heparin caused a distinct change in the distribution of protein/lipid free radicals at sites of failure alongside a variety of pertinent redox changes related to osteoarthritis. This study directly confirms the production of biomolecular free radicals from articular trauma, providing a rigorous characterization of their formation by injury.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Condrocitos , Radicales Libres , Heparina , Detección de Spin/métodos , Porcinos
15.
Antioxidants (Basel) ; 11(5)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35624792

RESUMEN

The superoxide dismutase (SOD) family functions as a reactive oxygen species (ROS)-scavenging system by converting superoxide anions into hydrogen peroxide in the cytosol (SOD1), mitochondria (SOD2), and extracellular matrix (SOD3). In this study, we examined the potential roles of SOD family members in skin aging. We found that SOD3 expression levels were significantly more reduced in the skin tissues of old mice and humans than in young counterparts, but SOD1 and SOD2 expression levels remained unchanged with aging. Accordingly, we analyzed the effects of SOD3 on intracellular ROS levels and the integrity of the extracellular matrix in fibroblasts. The treatment of foreskin fibroblasts with recombinant SOD3 reduced the intracellular ROS levels and secretion of MMP-1 while increasing the secretion of type I collagen. The effects of SOD3 were greater in fibroblasts treated with the TNF-α. SOD3 treatment also decreased the mRNA levels and promoter activity of MMP-1 while increasing the mRNA levels and promoter activities of COL1A1 and COL1A2. SOD3 treatment reduced the phosphorylation of NF-κB, p38 MAPK, ERK, and JNK, which are essential for MMP-1 transactivation. In a three-dimensional culture of fibroblasts, SOD3 decreased the amount of type I collagen fragments produced by MMP-1 and increased the amount of nascent type I procollagen. These results demonstrate that SOD3 reduces intracellular ROS levels, suppresses MMP-1 expression, and induces type I collagen expression in fibroblasts. Therefore, SOD3 may play a role in delaying or preventing skin aging.

16.
Front Med (Lausanne) ; 9: 811975, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360751

RESUMEN

Background and Objectives: Accumulating evidence suggests that oxidative stress is involved in the development of chronic obstructive pulmonary disease (COPD) and its progression. Activity of extracellular superoxide dismutase (ecSOD), the only extracellular enzyme eliminating superoxide radicals, has been reported to decline in acute exacerbations of COPD (AECOPD). However, the association between serum ecSOD activity and 1-year all-cause mortality in AECOPD patients remains unclear. The objective of our study was to explore the usefulness of ecSOD activity on admission in AECOPD as an objective predictor for 1-year all-cause mortality. Methods: We measured serum ecSOD activity in AECOPD patients on admission in a prospective cohort study. We also recorded their laboratory and clinical data. Multivariate Cox regression was used to analyze the association between ecSOD activity and the risk of 1-year all-cause mortality. Restricted cubic spline curves were used to visualize the relationship between ecSOD activity and the hazard ratio of 1-year all-cause mortality. Results: A total of 367 patients were followed up for 1 year, and 29 patients died during a 1-year follow-up period. Compared with survivors, the non-survivors were older (79.52 ± 8.39 vs. 74.38 ± 9.34 years old, p = 0.004) and had increased levels of tobacco consumption (47.07 ± 41.67 vs. 33.83 ± 31.79 pack-years, p = 0.037). Having an ecSOD activity ≤ 98.8 U/ml was an independent risk factor of 1-year all-cause mortality after adjustment for baseline differences, clinical variables and comorbidities [hazard ratio = 5.51, 95% confidence interval (CI): 2.35-12.95, p < 0.001]. Conclusion: Lower serum ecSOD activity was a strong and independent predictor of 1-year all-cause mortality in AECOPD patients.

17.
Front Oncol ; 12: 722646, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356201

RESUMEN

Background: The recognition of new diagnostic and prognostic biological markers for lung cancer, the most severe malignant tumor, is an essential and eager study. In a microenvironment, superoxide dismutase 3 (SOD3) can adjust active oxygen, and it refers to a secreted antioxidant enzyme. It was also found to be cancer-related, and in lung cancer, it was remarkably down-regulated. More and more new cancer research focuses on the function of SOD3. Despite this, there is no good description of SOD3 function in the LC progression. Methods: Through bioinformatics analysis, we found that SOD3 was a possible novel lung cancer gene in this study. We analyzed data sets from Gene Expression Comprehensive Database (GEO) and the Cancer Genome Atlas (TCGA), and SOD3 expression was studied in lung cancer. This study estimated the SOD3 diagnosis and prognosis through gene expression differential display, gene set enrichment analysis (GSEA), enrichment and genomes (KEGG) analysis, and gene ontology (GO). Then in order to investigate the SOD3 presentation in lung cancer cells, we used Western Blot and also applied Flow cytometry to detect the impact of anti-tumor medicine on tumor cell apoptosis. Results: We found that the expression level of SOD3 in lung cancer was low (P = 4.218E-29), while the survival of lung cancer patients with high SOD3 expression was shorter (LUSC p =0.00086, LUAD p=0.00038). According to the result of western blot, the expression of SOD3 in tumor cells was higher than that in normal cells. The ratio of early apoptosis induced by anti-cancer drugs was 10.5% in normal cells, 35.1% in squamous cell carcinoma and 36.9% in adenocarcinoma.The SOD3 high expression was associated with poor survival probability by multivariate analysis (HR: 1.006, 95% CI 1.002-1.011, p=0.006). Moreover, SOD3 high expression group had higher ESTIMATE scores, and larger amount of immune infiltrating cells. SOD3 expression is correlated with PDCD1 and CTLA4 expression. Conclusions: SOD3 gene can be used as a prognostic gene in lung cancer patients, and lung cancer patients with high expression of this gene can reap worse prognostic outcome. It can be used as a new clinical method and prognosticator for lung cancer patients.

18.
Sci China Life Sci ; 65(8): 1636-1654, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35226255

RESUMEN

The immunomodulatory potential of dihydroartemisinin (DHA) has recently been highlighted; however, the potential mechanism remains to be clarified. Single-cell RNA sequencing was explored in combination with cellular and biochemical approaches to elucidate the immunomodulatory mechanisms of DHA. In this study, we found that DHA induced both spleen enlargement and rearrangement of splenic immune cell subsets in mice. It was revealed that DHA promoted the reversible expansion of effective regulatory T cells and interferon-γ+ cytotoxic CD8+ T cells in the spleen via induction of superoxide dismutase 3 (SOD3) expression and increased phosphorylation of c-Jun N-terminal kinases (JNK) and its downstream activator protein 1 (AP-1) transcription factors. Further, SOD3 knockout mice were resistant to the regulatory effect of DHA. Thus, DHA, through the activation of the SOD3-JNK-AP-1 axis, beneficially regulated immune cell heterogeneity and splenic immune cell homeostasis to treat autoimmune diseases.


Asunto(s)
Artemisininas , Proteínas Quinasas JNK Activadas por Mitógenos , Superóxido Dismutasa , Factor de Transcripción AP-1 , Animales , Artemisininas/farmacología , Linfocitos T CD8-positivos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Fosforilación , Bazo , Superóxido Dismutasa/metabolismo , Factor de Transcripción AP-1/metabolismo
19.
FASEB J ; 36(3): e22177, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35142393

RESUMEN

Exosomes, key mediators of cell-cell communication, derived from type 2 diabetes mellitus (T2DM) exhibit detrimental effects. Exercise improves endothelial function in part via the secretion of exosomes into circulation. Extracellular superoxide dismutase (SOD3) is a major secretory copper (Cu) antioxidant enzyme that catalyzes the dismutation of O2•- to H2 O2 whose activity requires the Cu transporter ATP7A. However, the role of SOD3 in exercise-induced angiogenic effects of circulating plasma exosomes on endothelial cells (ECs) in T2DM remains unknown. Here, we show that both SOD3 and ATP7A proteins were present in plasma exosomes in mice, which was significantly increased after two weeks of volunteer wheel exercise. A single bout of exercise in humans also showed a significant increase in SOD3 and ATP7A protein expression in plasma exosomes. Plasma exosomes from T2DM mice significantly reduced angiogenic responses in human ECs or mouse skin wound healing models, which was associated with a decrease in ATP7A, but not SOD3 expression in exosomes. Exercise training in T2DM mice restored the angiogenic effects of T2DM exosomes in ECs by increasing ATP7A in exosomes, which was not observed in exercised T2DM/SOD3-/- mice. Furthermore, exosomes overexpressing SOD3 significantly enhanced angiogenesis in ECs by increasing local H2 O2  levels in a heparin-binding domain-dependent manner as well as restored defective wound healing and angiogenesis in T2DM or SOD3-/- mice. In conclusion, exercise improves the angiogenic potential of circulating exosomes in T2DM in a SOD3-dependent manner. Exosomal SOD3 may provide an exercise mimetic therapy that supports neovascularization and wound repair in cardiometabolic disease.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Exosomas/metabolismo , Neovascularización Fisiológica , Carrera , Superóxido Dismutasa/metabolismo , Animales , Células Cultivadas , ATPasas Transportadoras de Cobre/sangre , ATPasas Transportadoras de Cobre/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiología , Ejercicio Físico , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Condicionamiento Físico Animal/métodos , Ratas , Superóxido Dismutasa/sangre
20.
Life Sci ; 288: 120154, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34800514

RESUMEN

AIMS: The calcineurin inhibitor tacrolimus is an effective and widely used immunosuppressant after organ transplantation to reduce graft rejection. However, its nephrotoxic effect could compel the patients to treatment discontinuation. The beneficial effects of angiotensin-converting enzyme 2 (ACE2) on the kidney and other organs have been investigated in several studies, but its role in tacrolimus nephrotoxicity still needs to be elucidated. Our study was designed to investigate effects of the ACE2 activator xanthenone on tacrolimus-induced renal injury. MATERIALS AND METHODS: Male Wistar rats were administered xanthenone (2 mg/kg) concurrently with tacrolimus (1 mg/kg) for 3 weeks, then blood and kidney tissue samples were collected for biochemical and molecular investigations. KEY FINDINGS: Co-administration of xanthenone significantly improved renal functions in tacrolimus-treated rats, where serum creatinine, urea, and uric acid levels were close to those of the normal control. Besides, xanthenone reduced renal angiotensin (ANG) II content, while elevated ANG (1-7). Relative protein expressions of p-ERK/ERK and p-p38 MAPK/p38 MAPK inflammatory signals were downregulated upon xanthenone administration with tacrolimus. In addition, xanthenone reinforced antioxidant defense against tacrolimus by enhancing protein expression of the transcription factor Nrf2 with subsequently increased mRNA expressions of the antioxidants SOD3 and GCLC. SIGNIFICANCE: These protective effects of xanthenone could be attributed to ANG II degradation to ANG (1-7) by ACE2 activation resulting in regulated inflammatory and oxidative responses in the kidney. Therefore, administration of xanthenone along with tacrolimus could be a promising therapeutic strategy to reduce the adverse effects and increase the tolerability to tacrolimus immunosuppressive therapy.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedades Renales/tratamiento farmacológico , Tacrolimus/toxicidad , Xantenos/farmacología , Angiotensina II/genética , Angiotensina II/metabolismo , Animales , Inhibidores de la Calcineurina/toxicidad , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ratas , Ratas Wistar , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Ácido Úrico/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA