Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JAAD Int ; 11: 72-77, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36937029

RESUMEN

Background: The magnitude of short/medium-term air pollution exposure on atopic dermatitis (AD) flare has not been fully investigated. The aim of the study was to investigate the association of short/medium-term exposure to airborne pollution on AD flares in patients treated with dupilumab. Methods: Observational case-crossover study. Patients with moderate-to-severe AD under treatment with dupilumab were included. The exposure of interest was the mean concentrations of coarse and fine particulate matter (PM10, PM2.5), nitrogen dioxide, and oxides (NO2, NOx). Different intervals were considered at 1 to 60 days before the AD flare and control visit, defined as the visit with the highest Eczema Area and Severity Index scores >8 and ≤7, respectively. A conditional logistic regression analysis adjusted for systemic treatments was employed to estimate the incremental odds (%) of flare every 10 µg/m3 pollutant concentration. Results: Data on 169 of 528 patients with AD having 1130 follow-up visits and 5840 air pollutant concentration measurements were retrieved. The mean age was 41.4 ± 20.3 years; 94 (55%) men. The incremental odds curve indicated a significant positive trend of AD flare for all pollutants in all time windows. At 60 days, every 10 µg/m3 PM10, PM2.5, NOx, and NO2 increase concentration was associated with 82%, 67%, 28%, and 113% odds of flare, respectively. Conclusions: In patients treated with dupilumab, acute air pollution exposure is associated with an increased risk for AD flare with a dose-response relationship.

2.
Process Saf Environ Prot ; 166: 368-383, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36034108

RESUMEN

Over more than two years of global health crisis due to ongoing COVID-19 pandemic, Romania experienced a five-wave pattern. This study aims to assess the potential impact of environmental drivers on COVID-19 transmission in Bucharest, capital of Romania during the analyzed epidemic period. Through descriptive statistics and cross-correlation tests applied to time series of daily observational and geospatial data of major outdoor inhalable particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) or ≤ 10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), Aerosol Optical Depth at 550 nm (AOD) and radon (222Rn), we investigated the COVID-19 waves patterns under different meteorological conditions. This study examined the contribution of individual climate variables on the ground level air pollutants concentrations and COVID-19 disease severity. As compared to the long-term average AOD over Bucharest from 2015 to 2019, for the same year periods, this study revealed major AOD level reduction by ~28 % during the spring lockdown of the first COVID-19 wave (15 March 2020-15 May 2020), and ~16 % during the third COVID-19 wave (1 February 2021-1 June 2021). This study found positive correlations between exposure to air pollutants PM2.5, PM10, NO2, SO2, CO and 222Rn, and significant negative correlations, especially for spring-summer periods between ground O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance with COVID-19 incidence and deaths. For the analyzed time period 1 January 2020-1 April 2022, before and during each COVID-19 wave were recorded stagnant synoptic anticyclonic conditions favorable for SARS-CoV-2 virus spreading, with positive Omega surface charts composite average (Pa/s) at 850 mb during fall- winter seasons, clearly evidenced for the second, the fourth and the fifth waves. These findings are relevant for viral infections controls and health safety strategies design in highly polluted urban environments.

3.
Artículo en Inglés | MEDLINE | ID: mdl-34207027

RESUMEN

With the development of trade liberalization, the pollutants emissions embodied in global trade are increasing. The pollution haven hypothesis caused by trade has aroused wide attention. The fragmentation of international production has reshaped trade patterns. The proportion of intermediate product trade in global trade is increasing. However, little has been done to study the pollution haven of different pollutants under different trade patterns. In this paper, major environmental pollutants CO2 (carbon dioxide), SO2 (sulfur dioxide), and NOx (nitrogen oxides) are selected as the research objects. This study investigated the global pollution haven phenomenon in 43 countries and 56 major industries from 2000 to 2014. Based on the MRIO model, the trade mode is divided into three specific patterns: final product trade, intermediate product trade in the last stage of production, and the trade related to the global value chain. The results show that trade liberalization could reduce global CO2, SO2, and NOx emissions, and intermediate product trade has a more significant emission reduction effect than final product trade. Trade's impacts on each country are various, and the main drivers are also different. For example, the European Union avoids becoming a pollution haven mainly through the trade related to the global value chain. The suppressed emissions under this trade pattern are 71.8 Mt CO2, 2.2 Mt SO2, 2.2 Mt NOx. India avoids most pollutants emissions through intermediate product trade. China has become the most serious pollution haven through final product trade. The trade pattern could increase China 829.4 Mt CO2, 4.5 Mt SO2, 2.6 Mt NOx emissions in 2014.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Dióxido de Carbono/análisis , China , Contaminación Ambiental/análisis , India , Dióxido de Azufre
4.
Sustain Cities Soc ; 72: 103051, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34099968

RESUMEN

With the arrival of the SARS-CoV-2 coronavirus, the scientific academia, as well as policymakers, are striving to conceive solutions as an attempt to contain the spreading of contagion. Among the adopted measures, severe lockdown restrictions were issued to avoid the diffusion of the virus in an uncontrolled way through public spaces. It can be deduced from recent literature that the primary route of transmission is via aerosols, produced mainly in poorly ventilated interior areas where infected people spend a lot of time with other people. Concerning contagion rates, accumulated incidence or number of hospitalizations due to COVID-19, Spain, and Italy have reached very high levels. In this framework, a regression analysis to assess the feasibility of the indoor ventilation measures established in Spain and Italy, with respect to the European framework, is here presented. To this aim, ten cases of housing typology were and analyzed. The results show that the measures established in the applicable regulations to prevent and control the risk of contagion by aerosols are not adequate to guarantee a healthy environment indoors. The current Italian guidelines are more restrictive than in Spain, yet the ventilation levels are still insufficient in times of pandemic.

5.
World Allergy Organ J ; 14(5): 100538, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025904

RESUMEN

BACKGROUND: Asthma is a common pediatric chronic respiratory disease worldwide. Previous studies showed the prevalence of childhood asthma increased in developed countries as well as in Taiwan in the late 20th century. Recently, several reports from different parts of the world showed a reversed trend in this epidemic of childhood asthma prevalence. This study investigated the trend of childhood asthma through serial cross-section questionnaire surveys in the southern part of Taiwan, and identified associated factors related to this trend in elementary school children. METHODS: We used the Chinese version of the International Study of Asthma and Allergies in Childhood (ISAAC)29 questionnaire to assess the asthma status of elementary school students aged 6-12 years in Tainan city in 3 independent study periods, namely, 2008-2009, 2010-2012, and 2017-2018. We assessed the trend of "asthma" and "related respiratory symptoms" across 3 study periods. RESULTS: Of the 19,633 respondents, 17,545 (89.4%) completed the questionnaires. After adjustment for covariates, the prevalence of asthma and related respiratory symptoms was significantly lower in 2017-2018 than in the 2 earlier periods. Among the protective factors, the increasing rate of breastfeeding might be partly responsible for the observed reduced prevalence of current asthma and exercise-induced wheeze, but not physician-diagnosed asthma. The presence of pets in the house was the risk factor that correlated with the prevalence of nocturnal cough. Pearson correlation analysis showed a significant correlation of the prevalence of physician-diagnosed asthma, current asthma, and exercise-induced wheezing with the concentrations of air pollutant particles with aerodynamic diameter ≤10 µM (PM10) (r = 0.84, 0.77 and 0.81, respectively). CONCLUSION: The prevalence of asthma and related respiratory symptoms has declined in elementary school-age children in southern Taiwan. The increased prevalence of breastfeeding, decreased rate of the presence of pets in the house, and improvement in outdoor air pollution seem to be related to this decreasing trend of asthma in school children. Our findings will provide the scientific base to empower prevention policy to reverse the trend of childhood asthma prevalence. TRIAL REGISTRATION: N/A.

6.
World Allergy Organ J ; 14(1): 100499, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33510831

RESUMEN

Indoor environments contribute significantly to total human exposure to air pollutants, as people spend most of their time indoors. Household air pollution (HAP) resulting from cooking with polluting ("dirty") fuels, which include coal, kerosene, and biomass (wood, charcoal, crop residues, and animal manure) is a global environmental health problem. Indoor pollutants are gases, particulates, toxins, and microorganisms among others, that can have an impact especially on the health of children and adults through a combination of different mechanisms on oxidative stress and gene activation, epigenetic, cellular, and immunological systems. Air pollution is a major risk factor and contributor to morbidity and mortality from major chronic diseases. Children are significantly affected by the impact of the environment due to biological immaturity, prenatal and postnatal lung development. Poor air quality has been related to an increased prevalence of clinical manifestations of allergic asthma and rhinitis. Health professionals should increase their role in managing the exposure of children and adults to air pollution with better methods of care, prevention, and collective action. Interventions to reduce household pollutants may promote health and can be achieved with education, community, and health professional involvement.

7.
Appl Energy ; 279: 115835, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32952266

RESUMEN

Being heavily dependent to oil products (mainly gasoline and diesel), the French transport sector is the main emitter of Particulate Matter (PMs) whose critical levels induce harmful health effects for urban inhabitants. We selected three major French cities (Paris, Lyon, and Marseille) to investigate the relationship between the Coronavirus Disease 19 (COVID-19) outbreak and air pollution. Using Artificial Neural Networks (ANNs) experiments, we have determined the concentration of PM2.5 and PM10 linked to COVID-19-related deaths. Our focus is on the potential effects of Particulate Matter (PM) in spreading the epidemic. The underlying hypothesis is that a pre-determined particulate concentration can foster COVID-19 and make the respiratory system more susceptible to this infection. The empirical strategy used an innovative Machine Learning (ML) methodology. In particular, through the so-called cutting technique in ANNs, we found new threshold levels of PM2.5 and PM10 connected to COVID-19: 17.4 µg/m3 (PM2.5) and 29.6 µg/m3 (PM10) for Paris; 15.6 µg/m3 (PM2.5) and 20.6 µg/m3 (PM10) for Lyon; 14.3 µg/m3 (PM2.5) and 22.04 µg/m3 (PM10) for Marseille. Interestingly, all the threshold values identified by the ANNs are higher than the limits imposed by the European Parliament. Finally, a Causal Direction from Dependency (D2C) algorithm is applied to check the consistency of our findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA