Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; : 119957, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307229

RESUMEN

Surface sulfidation has been widely investigated to effectively enhance the utilization and selectivity of iron electrons for enhanced pollutant reduction. However, there is relatively less knowledge on whether sulfidation facilitates the catalytic oxidation process and the mechanism of enhancement. Therefore, in this study, the role of surface sulfidation in modulating the oxidant decomposition pathway and reactive oxygen species generation was investigated with the sulfidated zerovalent iron (S-ZVI) activated persulfate (PS) system. The results revealed that sulfur on the surface of S-ZVI not only facilitates PS activation to generate more SO4•-, but also acts as an essential in the dynamic equilibrium between SO4•- and •OH. Specifically, the S-ZVI surface sulfide first forms sulfur monomers during catalysis, which promotes electron transfer to accelerate Fe3+ to Fe2+ cycling, prompting the generation of more SO4•- also generates SO32-. Then, SO32- is further reacted with •OH to generate the [O--O-SO3-] intermediate of SO4•-, which leads to a dynamic equilibrium of SO4•- and •OH, mitigating the further conversion of SO4•- to •OH. These findings unveiled the dynamic variation of sulfur on the surface of S-ZVI during PS activation, elevating new insights for the sulfate radical-based efficient degradation.

2.
J Colloid Interface Sci ; 665: 219-231, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38522161

RESUMEN

Herein, a new heterogeneous CoSe2-x@NC material with abundant selenium vacancies is synthesized via an in-situ carbonization-selenization process from cobaltic metal organic framework (Co-MOF). The obtained CoSe2-x@NC has a unique electronic structure and rich active sites, which can activate peroxymonosulfate (PMS) to degrade carbamazepine (CBZ) with superior catalytic performance and stability. The quenchingexperiments and EPR test show that SO4•- is the dominant reactive oxidation species (ROSs) for CBZ degradation. Significantly, systemic electrochemical tests and theoretical calculations illustrated that the dominant role of SO4•- is attributed to the existence of abundant selenium vacancies in CoSe2-x@NC, which can adjust the density of electron cloud of the Co atoms in CoSe2-x@NC to improve the PMS adsorption and promoting the conversion of transition metallic redox pairs (Co3+/Co2+). This work provides a facile way to improve the activity and stability of CoSe2 by defect engineering in the PMS based advanced oxidation process (AOPs).

3.
Ecotoxicol Environ Saf ; 263: 115298, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37499385

RESUMEN

Hexafluoropropylene oxide dimer acid (HFPO-DA) is widely used as a substitute for perfluorooctanoic acid (PFOA). HFPO-DA exhibits high water solubility and low adsorption potential, conferring significant fluidity in aquatic environments. Given that the toxicity of HFPO-DA is similar to PFOA, it is necessary to control its content in aquatic environments. Electrochemical and thermally-activated persulfates have been successfully used to degrade HFPO-DA, but UV-activated persulfates cannot degrade the compound. Given that research on degradation mechanisms is still incomplete and lacks kinetic research, the mechanism and kinetic calculations of oxidative degradation were studied in detail using DFT calculations. And the toxicity of HFPO-DA degradation intermediates and products was evaluated to reveal the feasibility of using advanced oxidation process (AOP) technology based on persulfate to degrade HFPO-DA in wastewater. The results showed that the committed step of HFPO-DA degradation was initiated by the electron transfer reaction of SO4•- radicals. This reaction is not spontaneous at room temperature and requires sufficient electrical or thermal energy to be absorbed from the external environment. The perfluoroalcohol produced during this reaction can subsequently undergo four possible reactions: H atom abstraction from alcohol groups by an OH radical; H atom abstraction by SO4•-; direct HF removal; and HF removal with water as the catalyst. The final degradation products of HFPO-DA mainly include CO2, CF3CF2COOH, CF3COOH, FCOOH and HF, which has been identified through previous experimental analysis. Ecotoxicity assessment indicates that degradation does not produce highly toxic intermediates, and that the final products are non-toxic, supporting the feasibility of persulfate-based AOP technologies.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Oxidación-Reducción , Fluorocarburos/toxicidad , Agua , Contaminantes Químicos del Agua/toxicidad , Medición de Riesgo
4.
Environ Sci Pollut Res Int ; 30(16): 48389-48400, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36759407

RESUMEN

Although heterogeneous cobalt-based catalysts have been widely studied and used in SO4•- based advanced oxidation processes, the efficiencies were still not high enough due to the limiting step of Co(III)/Co(II) cycle in the system. In this study, a bimetallic oxide composed of Co and Mo was designed and used for enhancing the performance of peroxymonosulfate activation on organic pollutants removal. The CoMoO4 nanorods exhibited superior catalytic activity for methylene blue (MB) degradation than Co3O4, MoO3, and their mechanical mixture, which was attributed to the synergetic effect between Co and Mo. CoMoO4 nanorods were able to efficiently degrade MB under a wide pH range of 3-11 and could maintain high efficiency in 5 cycles with less leakage of metal ions. Moreover, CoMoO4 nanorods displayed broad spectrum applicability to the different water matrix and a variety of pollutants such as phenol and Congo red. The Co(II) was proved to be the main active site of the catalyst, while Mo played an important role in promoting the Co(III)/Co(II) cycle. Surface free radicals are the main active species in the degradation process. This work provides new insights into the design of cobalt-based bimetallic catalyst and the improvement on PMS activation.


Asunto(s)
Contaminantes Ambientales , Contaminantes Ambientales/química , Peróxidos/química , Óxidos/química , Cobalto/química
5.
Environ Res ; 217: 114852, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36457238

RESUMEN

Metformin consumption for diabetes treatment is increasing, leading to its presence in wastewater treatment plants where conventional methods cannot remove it. Therefore, this work aims to analyze the performance of advanced oxidation processes using sulfate radicals in the degradation of metformin from water. Experiments were performed in a photoreactor provided with a low-pressure Hg lamp, using K2S2O8 as oxidant and varying the initial metformin concentration (CA0), oxidant concentration (Cox), temperature (T), and pH in a response surface experimental design. The degradation percentages ranged from 26.1 to 87.3%, while the mineralization percentages varied between 15.1 and 64%. Analysis of variance (ANOVA) showed that the output variables were more significantly affected by CA0, Cox, and T. Besides, a reduction of CA0 and an increase of Cox up to 5000 µM maximizes the metformin degradation since the generation of radicals and their interaction with metformin molecules are favored. For the greatest degradation percentage, the first order apparent rate constant achieved was 0.084 min-1. Furthermore, while in acidic pH, temperature benefits metformin degradation, an opposite behavior is obtained in a basic medium because of recombination and inhibition reactions. Moreover, three degradation pathways were suggested based on the six products detected by HPLC-MS: N-cyanoguanidine m/z = 85; N,N-dimethylurea m/z = 89; N,N-dimethyl-cyanamide m/z = 71 N,N-dimethyl-formamide m/z = 74; glicolonitrilo m/z = 58; and guanidine m/z = 60. Finally, it was shown that in general the toxicity of the degradation byproducts was lower than the toxicity of metformin toward Chlamydomonas reinhardtii.


Asunto(s)
Metformina , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Oxidantes , Sulfatos/química , Oxidación-Reducción , Agua , Rayos Ultravioleta , Cinética
6.
J Environ Chem Eng ; 11(1): 109193, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36569264

RESUMEN

Residues in surface water of ribavirin, which used extensively during the COVID-19 pandemic, have become an emerging issue due to its adverse impact on the environment and human health. UV/H2O2 and UV/peroxydisulfate (PDS) have different degradation effects on ribavirin, and the same operational parameter have different effects on the two processes. In this study, the reaction mechanism and degradation efficiency for ribavirin were studied to compare the differences under UV/H2O2 and UV/PDS processes. We calculated the total rate constants of ribavirin with HO• and SO4 •- in the liquid phase as 2.73 × 108 and 9.39 × 105 M-1s-1. The density functional theory (DFT) calculation results showed that HO• and SO4 •- react more readily with ribavirin via H-abstraction (HAA). The nitrogen-containing heterocyclic ring is difficult to undergo ring-opening degradation. The UV/PDS process was more stable and performed better than the UV/H2O2 for the ribavirin degradation when the same molar oxidant dosage was applied. HO• plays an extremely important role in the degradation of ribavirin by UV/PDS. The reason for this phenomenon is the combination of the higher yield of HO• produced in the UV/PDS process and the faster reaction rate of ribavirin with HO•. The UV/H2O2 process is more sensitive to pH than UV/PDS. Alkaline condition can significantly inhibit the ribavirin degradation. The effects of natural organic matter (NOM) and ribavirin concentration were also compared. Eventually, the toxicity prediction of the product showed that the opening-ring products were more toxic than the parent compound.

7.
Environ Sci Technol ; 56(18): 13131-13141, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36067445

RESUMEN

The poor oxidation capacity of the Fe(II)/S2O82- [Fe(II)/PDS] system at pH > 3.0 has limited its wide application in water treatment. To unravel the underlying mechanism, this study systematically evaluated the possible influencing factors over the pH range of 1.0-8.0 and developed a mathematical model to quantify these effects. Results showed that ∼82% of the generated Fe(IV) could be used for pollutant degradation at pH 1.0, whereas negligible Fe(IV) contribution was observed at pH 7.5. This dramatic decline of Fe(IV) contribution with increasing pH dominantly accounted for the pH-dependent performance of the Fe(II)/PDS process. Unexpectedly, Fe(II) could consume ∼80% of the generated SO4•- non-productively under both acidic and near-neutral conditions, while the larger formation of Fe(III) precipitates at high pH inhibited the SO4•- contribution mildly. Moreover, the strong Fe(II) scavenging effect was difficult to be compensated for by slowing down the Fe(II) dosing rate. The competition of dissolved oxygen with PDS for Fe(II) was insignificant at pH ≤ 7.5, where the second-order rate constants for reactions of Fe(II) with oxygen were much lower than or comparable to that between Fe(II) and PDS. These findings could advance our understanding of the chemistry and application of the Fe(II)/PDS process.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Compuestos Férricos , Compuestos Ferrosos , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Oxígeno , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Technol ; 56(9): 5542-5551, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35412804

RESUMEN

Sulfidation can greatly improve the efficiency of utilization of reducing equivalents for contaminant removal; however, whether this method benefits Fenton-like reactions or not and the possible mechanism are not well understood. In this study, we revealed that surface sulfidation can greatly promote the heterogeneous Fenton activity of ß-FeOOH (Fe3S4@ß-FeOOH) by 40 times, in which not only the •OH formation was enhanced but also SO4•- as a new oxidation species was generated. Moreover, their contribution to metronidazole (MTZ) degradation was 52.5 and 37.1%, respectively. In comparison, almost no HO2•/O2•- was detected in the Fe3S4@ß-FeOOH/H2O2 system. These results were different from some previously reported Fenton counterparts. Based on the characterization and probe experiments, sulfur species, including S2-, S0, and Sn2-, as an electron donor and electron shuttle were responsible for efficient conversion of Fe(III) into Fe(II) other than via the Haber-Weiss mechanism, leading to excellent •OH generation via a Fenton-like mechanism. Most importantly, HSO5- can be generated from SO32- oxidized by •OH, and its scission into SO4•- was not dependent on the extra electric potential or Fe-O2-S(IV) intermediate. These findings provided new insight for utilizing sulfidation to improve the activity of iron-based Fenton catalysts.


Asunto(s)
Compuestos Férricos , Peróxido de Hidrógeno , Hierro , Oxidación-Reducción , Sulfatos
9.
J Hazard Mater ; 413: 125324, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33582464

RESUMEN

Photocatalytic materials for photocatalysis is recently proposed as a promising strategy to address environmental remediation. Metal-free graphitic carbon nitride (g-C3N4), is an emerging photocatalyst in sulfate radical based advanced oxidation processes. The solar-driven electronic excitations in g-C3N4 are capable of peroxo (O‒O) bond dissociation in peroxymonosulfate/peroxydisulfate (PMS/PDS) and oxidants to generate reactive free radicals, namely SO4•- and OH• in addition to O2•- radical. The synergistic mechanism of g-C3N4 mediated PMS/PDS photocatalytic activation, could ensure the generation of OH• radicals to overcome the low reductive potential of g-C3N4 and fastens the degradation reaction rate. This article reviews recent work on heterojunction formation (type-II heterojunction and direct Z-scheme) to achieve the bandgap for extended visible light absorption and improved charge carrier separation for efficient photocatalytic efficiency. Focus is placed on the fundamental mechanistic routes followed for PMS/PDS photocatalytic activation over g-C3N4-based photocatalysts. A particular emphasis is given to the factors influencing the PMS/PDS photocatalytic activation mechanism and the contribution of SO4•- and OH• radicals that are not thoroughly investigated and require further studies. Concluding perspectives on the challenges and opportunities to design highly efficient persulfate-activated g-C3N4 based photocatalysts toward environmental remediation are also intensively highlighted.

10.
J Hazard Mater ; 404(Pt A): 124145, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33032089

RESUMEN

Three magnetic biochar nanocomposites named as C800-1, C800-2 and C800-3 with increased iron deposition amount, decreased graphitized degree and gradually destroyed graphitized carbon layers, respectively, were prepared using potassium ferrate as activator and corn straw as biomass. C800-1, C800-2 and C800-3 exhibited much different bisphenol A degradation effect in presence of peroxymonosulfate among which C800-3 owned the best catalytic performance. For the degradation mechanism, the dominant role of electron transfer pathway was gradually replaced by the SO4•- pathway with the increase of iron amount and the destruction of graphitized carbon layers. This work would provide a simple and feasible method, namely changing the ratio of potassium ferrate and biochar, to manipulate the radical and nonradical degradation pathway in PMS-based organic wastewater purification.

11.
J Hazard Mater ; 405: 124228, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33246821

RESUMEN

The heterogeneous catalytic process has been under development for aqueous pollutant degradation, yet electron transfer efficiency often limits the effectiveness of catalytic reactions. In this study, a novel composite material, manganese doped iron-carbon (Mn-Fe-C), was tailor designed to promote the catalytic electron transfer. The Mn-Fe-C composite, synthesized via a facile carbothermal reduction method, was characterized and evaluated for its performance to activate persulfate (PS) and degrade Rhodamine Blue (RhB) dye under different pH, catalyst dosages, PS dosages, and pollutant concentrations. Electron spin resonance, along with quenching results by ethanol, tert-butanol, phenol, nitrobenzene and benzoquinone, indicated that surface bounded SO4•- was the main contributor for RhB degradation, while the roles of aqueous SO4•- and •OH were very minor. Through characterization by XRD, XPS and FTIR analysis, it was determined that the electron transfer during activation of PS was accelerated by the oxygen functional groups on catalyst surface and the promoted redox cycle of Fe3+ and Fe2+ by Mn. Finally, the Mn-Fe-C composite catalyst exhibited an excellent reusability and stability with negligible leached Fe and Mn ions in solutions. Results of this study provide a promising design for heterogeneous catalysts that can effectively activate PS to remove organic pollutants from water at circumneutral pH conditions.

12.
Chemosphere ; 237: 124521, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31408797

RESUMEN

Chemical oxidation processes have been extensively utilized in disinfection and removal of emerging organic contaminants in recent decades. Some undesired byproducts, however, are produced in these processes. Of them, bromate has attracted the most intensive attention. It was previously regarded as a byproduct that typically occurred in ozone-based oxidation processes. However, for the past decade, bromate formation has been detected in other oxidation processes such as CuO-catalyzed chlorination, SO4--based oxidation, and ferrate oxidation processes. This review summarizes the occurrences, mechanisms, influencing factors, risk assessment, and control strategies of bromate formation in the four oxidation processes, i.e., ozone-based oxidation, chlorine-based oxidation, SO4--based oxidation, and ferrate oxidation. Besides, some unresolved issues for future studies are provided: (1) Clarification of the relative contributions of SO4- and Br to the oxidation of bromine for bromate formation in SO4--based oxidation processes; (2) evaluation of the role of different reactive species in the bromate formation in the process of UV/HOCl; (3) quantification of the dual role of alkalinity in bromate formation during ozonation; (4) assessment of the risks of bromate formation in SO4--based oxidation processes for practical applications; and (5) exploration of strategies for inhibiting bromate formation in SO4--based oxidation, UV/chlorine, and metal oxide-catalyzed chlorination processes.


Asunto(s)
Bromatos/química , Contaminantes Químicos del Agua/química , Bromuros , Bromo , Cloro , Desinfección , Halogenación , Hierro , Oxidación-Reducción , Ozono , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Purificación del Agua
13.
Water Res ; 157: 435-444, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30978665

RESUMEN

Taking advantage of the active oxidants generated in the process of Mn(II)-catalyzed sulfite oxidation by oxygen, this study sought to enhance Mn(II) removal from water by activating oxygen with sulfite. The results revealed that Mn(II) can be effectively oxidized by oxygen to MnO2 with the addition of sulfite under environmentally relevant conditions, and the performance of this process is dependent on the dosage of sulfite and the initial pH. Mn K-edge XANES analysis indicates that Mn(II) removal is primarily due to the transformation of Mn(II) to MnO2 and, secondarily, to the adsorption of Mn(II) on generated MnO2. Co-existing NaCl and CaCl2 negatively affect Mn(II) removal, while the presence of Fe(II) considerably enhances Mn(II) removal by improving both Mn(II) oxidation and Mn(II) adsorption on the generated solids. Consequently, Mn(II) removal is as high as 98% in the presence of 1.0 mg/L of Fe(II) and both the residual Mn (<0.1 mg/L Mn) and Fe (<0.3 mg/L Fe) can meet China's drinking water standard. The experiments with real water samples also demonstrate the effectiveness of the sulfite-promoted Mn(II) removal process, especially in the presence of Fe(II). The enhancing effect of sulfite on Mn(II) oxidation by oxygen is mainly associated with the generation of HSO5-, and the critical step for generating HSO5- is the rapid oxidation of SO3•- by oxygen. EPR and radical scavenging studies demonstrate that SO4•- radical is the key reactive oxygen species responsible for Mn(II) oxidation by HSO5-.


Asunto(s)
Compuestos de Manganeso , Oxígeno , China , Oxidación-Reducción , Óxidos , Sulfitos
14.
J Hazard Mater ; 373: 519-526, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30951996

RESUMEN

This work investigates the transformation of iodide (I-) by Fe(II)-activated peroxydisulfate (PDS). The transformation of I- into iodate (IO3-) is a two-step process, involving reactive iodine species, such as hypoiodous acid (HOI), as a key intermediate, and IO3- as the final product. In the first step, SO4•- produced by Fe(II)-activated PDS is mainly responsible for the transformation of I- into HOI. In the second step, Fe(IV) formed by the reaction of Fe(III) with PDS is required, to facilitate the further oxidation of HOI to IO3-. The disproportionation of HOI and the oxidation by PDS alone contribute negligibly to IO3- formation. The IO3- yield increases to a maximum, before decreasing gradually, with increased PDS and Fe(II) dosages. The transformation of I- into IO3- is favored by lower pH and higher temperature, due to the greater SO4•- production by the reaction of Fe(II) with PDS under these conditions. Humic acid, as a representative natural organic matter, scavenges the formed HOI to form iodinated disinfection byproducts, which largely inhibit the transformation of I- into IO3-. In addition, the transformation of I- into IO3- and iodinated disinfection byproducts by Fe(II) activated PDS was confirmed in the natural waters.

15.
Water Res ; 149: 169-178, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30439580

RESUMEN

Degradation of propranolol (PrP) by a combined zero-valent iron and sulfite system under simulated sunlight irradiation (ZVI/sulfite/photo) was investigated. Simulated sunlight irradiation enhanced the degradation of PrP by accelerating the decomposition of ferric sulfite complex as a result to producing sulfite radical (SO3•-). As bubbles would block the transport of photons in the reaction solution, mechanical aeration rather than purging air was suggested to sustain the essential dissolved oxygen. The degradation of PrP increased with the elevation of initial ZVI concentration from 0.05 to 0.5 mM, but decreased a little with further increasing ZVI concentration to 1.0 mM. The degradation of PrP raised from 68.5% to 98.7% while sulfite dose increased from 0.1 to 2.0 mM. High removal efficiencies were always achieved when the initial PrP concentration ranged from 10 to 40 µM. As HSO3- which can efficiently complex Fe(II) and transfer Fe(III) to Fe(II) is the dominant species of sulfite at pH 4.0-6.0, the highest removal of PrP was achieved at pH 4.0-6.0. The presence of bicarbonate and humic acid significantly retarded the removal of PrP, while chloride ions could promote the removal of PrP to some extent. SO4•-, HO• and SO5•- were suggested to account for PrP removal, while SO4•- was evidenced to be the dominant radicals. Good reuse of ZVI in the system was also achieved as the removal of PrP kept higher than 80% after repeatedly used for 5 times. Possible degradation pathways of PrP in the ZVI/sulfite/photo system were accordingly proposed based on LC-MS and density functional theory calculation. The removal of amitriptyline, nitrobenzene, imipramine and methylparaben in the ZVI/sulfite/photo system was also evaluated. As a reducing agent, sulfite is expected to consume the possible formed bromine-containing intermediates as a result to inhibiting the formation of bromate, which is better than the activated persulfate system.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Concentración de Iones de Hidrógeno , Oxígeno , Sulfitos , Luz Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA