Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39120412

RESUMEN

In this article, we propose a dual-gate dielectric face tunnel field-effect transistor (DGDFTFET) that can exhibit three different output voltage states. Meanwhile, according to the requirements of the ternary operation in the ternary inverter, four related indicators representing the performance of the DGDFTFET are proposed, and we explain the impact of these indicators on the inverter and confirm that better indicators can be obtained by choosing appropriate design parameters for the device. Then, the ternary inverter implemented with this device can exhibit voltage transfer characteristics (VTCs) with three stable output voltage levels and bigger static noise margins (SNMs). In addition, by comparing the indicators of the DGDFTFET and a face tunnel field-effect transistor (FTFET), as well as the SNM of inverters, it is demonstrated that the performance of the DGDFTFET far surpasses the FTFET.

2.
J Hazard Mater ; 423(Pt B): 127143, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34517301

RESUMEN

In radioecological studies, there is a significant need for understanding the plant uptake of radionuclides on a cellular level. The present work applies mass spectrometry to image the radionuclide distribution within the cellular structures of plants at varying concentrations. In a first step, plants of Daucus carota and Pisum sativum labelled with iodine and rhenium were examined, at concentrations in the range of 10 mM. Cross sections of several plant parts were imaged by secondary ion mass spectrometry (SIMS) after cryogenation in order to preserve cell structure. In a second step, the distribution of 99Tc in the two plant species was determined. For radiological reasons, a concentration three orders of magnitude lower was used, rendering measurements with SIMS impossible. Therefore, resonant laser secondary neutral mass spectrometry (rL-SNMS) was used for the first time to image 99Tc with suppression of molecular isobaric interferences. The measurement of only about 1010 atoms of 99Tc atoms is demonstrated and the distribution of 99Tc within a single epidermal cell is imaged.


Asunto(s)
Renio , Yoduros , Rayos Láser , Radioisótopos , Espectrometría de Masa de Ion Secundario
3.
Anal Bioanal Chem ; 413(15): 3987-3997, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33973021

RESUMEN

Plutonium is a major contributor to the radiotoxicity in a long-term nuclear waste repository; therefore, many studies have focused on interactions of plutonium with the technical, geotechnical, and geological barriers of a possible nuclear waste storage site. In order to gain new insights into the sorption on surfaces and diffusion of actinides through these complex heterogeneous materials, a highly sensitive method with spatial resolution is required. Resonant laser secondary neutral mass spectrometry (Laser-SNMS) uses the spatial resolution available in time-of-flight secondary ion mass spectrometry (TOF-SIMS) in combination with the high selectivity, sensitivity, and low background noise of resonance ionization mass spectrometry (RIMS) and is, therefore, a promising method for the study and analysis of the geochemical behavior of plutonium in long-term nuclear waste storage. The authors present an approach with a combined setup consisting of a commercial TOF-SIMS instrument and a Ti:sapphire (Ti:Sa) laser system, as well as its optimization, characterization, and improvements compared to the original proof of concept by Erdmann et al. (2009). As a first application, the spatial distributions of plutonium and other elements on the surface of a pyrite particle and a cement thin section were measured by Laser-SNMS and TOF-SIMS, respectively. These results exemplify the potential of these techniques for the surface analysis of heterogeneous materials in the context of nuclear safety research.

4.
Anal Chim Acta ; 1112: 46-53, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32334681

RESUMEN

Precise detection of single-nucleotide mutations (SNMs) is extremely important in various biomedical applications, but the simultaneous detection of multiple SNMs remains a great challenge. Herein, we developed a new method based on CRISPR/Cas9 system for multiple SNMs detection. The CRISPR/Cas9 system transduces the nucleic acid into an intermediate trigger to initiate the isothermal amplification reaction and further form fluorescence signals. According to this strategy, we established nucleic acid bio-computing operations-molecule logic gate in simultaneous distinction of the genetic locus. We demonstrate that the fluorescence signals generated from different input combinations can be used to discriminate the multiple genetic locus, and the molecular logic gate has great potential in single-base mismatch detection. In addition, the successful assay of real samples indicates that the novel strategy could further adapt for the pathogenic monitoring and biomedical research.


Asunto(s)
Sistemas CRISPR-Cas/genética , Técnicas de Amplificación de Ácido Nucleico , Fluorescencia , Mutación
5.
Anal Chim Acta ; 1050: 132-138, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30661580

RESUMEN

Loop-mediated isothermal amplification (LAMP) is a useful platform for nucleic acids detection in point-of-care (POC) situations, and development of single-step, close-tube LAMP reactions for specific detection of single nucleotide mutations (SNMs) remains a challenge. We develop a novel primer-activatable LAMP (PA-LAMP) strategy that enables highly specific and sensitive SNM detection using single-step, close-tube reactions. This strategy designs a terminal-blocked inner primer with a ribonucleotide insertion, which is cleaved and activated specifically to perfectly matched targets by ribonuclease (RNase) H2, to realize efficient amplification of mutant genes. It has shown dynamic responses of mutant target in a linear range from 220 aM to 22 pM with a lowest detectable concentration of 22 aM. It also demonstrates very high specificity in identifying the mutant in a large excess of the wild-type with a discrimination ratio as high as ∼10,000. It has been successfully applied to mutation detection of genomic DNA in tumor cells. The PA-LAMP strategy provides a useful, portable and affordable POC platform for highly sensitive and specific detection of genetic mutations in clinical applications.


Asunto(s)
ADN de Neoplasias/genética , Técnicas de Amplificación de Ácido Nucleico , Nucleótidos/genética , ADN de Neoplasias/aislamiento & purificación , Células HT29 , Humanos , Mutación , Sistemas de Atención de Punto , Células Tumorales Cultivadas
6.
Anal Sci ; 34(11): 1265-1270, 2018 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29984782

RESUMEN

The characterization of radionuclides in Fukushima is important to determine their origins and current state in the environment. Radionuclides exist as fine particles and are mixed with other constituents. A measurement method with both micro-imaging capability and highly selective element detection is necessary to analyze these particles. We developed such an imaging technique using a time-of-flight secondary ion mass spectrometry and wavelength-tunable Ti:Sapphire lasers for the resonance ionization of target elements without mass interference. This is called resonant laser ionization sputtered neutral mass spectrometry. The instrument has a high lateral resolution and a higher ionization selectivity using two-step resonance excitation of Cs with two lasers at different wavelengths. Optimization of the wavelength for resonance ionization using a Cs compound was performed, and a real environmental particle containing radioactive Cs was analyzed. Isotope images of three kinds of Cs were successfully obtained without interfere from Ba isotopes for the first time.

7.
J Am Soc Mass Spectrom ; 28(6): 1182-1191, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28265969

RESUMEN

The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α+) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10-5. Our lab has developed a method for the direct determination of α+ in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C24H12), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C60 cluster projectiles is of the order of 10-3, with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. Graphical Abstract .

8.
Beilstein J Nanotechnol ; 5: 1491-500, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25247132

RESUMEN

It is shown, by using depth profiling with a secondary neutral mass spectrometer and structure investigations by XRD and TEM, that at low temperatures, at which the bulk diffusion is frozen, a complete homogenization can take place in the Cu/Au thin film system, which leads to formation of intermetallic phases. Different compounds can be formed depending on the initial thickness ratio. The process starts with grain boundary interdiffusion, which is followed by a formation of reaction layers at the grain boundaries that leads to the motion of the newly formed interfaces perpendicular to the grain boundary plane. Finally, the homogenization finishes when all the pure components have been consumed. The process is asymmetric: It is faster in the Au layer. In Au(25nm)/Cu(50nm) samples the final state is the ordered AuCu3 phase. Decrease of the film thicknesses, as expected, results in the acceleration of the process. It is also illustrated that changing the thickness ratio either a mixture of Cu-rich AuCu and AuCu3 phases (in Au(25nm)/Cu(25nm) sample), or a mixture of disordered Cu- as well as Au-rich solid solutions (in Au(25nm)/Cu(12nm) sample) can be produced. By using a simple model the interface velocity in both the Cu and Au layers were estimated from the linear increase of the average composition and its value is about two orders of magnitude larger in Au (ca. 10(-11) m/s) than in Cu (ca. 10(-13) m/s).

9.
Surf Interface Anal ; 45(1): 50-53, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26311917

RESUMEN

Recent experimental measurements and calculations performed by molecular dynamics computer simulations indicate, for highly energetic C60 primary ions bombarding molecular solids, the emission of intact molecules is unique. An energy- and angle-resolved neutral mass spectrometer coupled with laser photoionization techniques was used to measure the polar angle distribution of neutral benzo[a]pyrene molecules desorbed by 20-keV [Formula: see text] primary ions and observed to peak at off-normal angles integrated over all possible emission energies. Similarly, computer simulations of 20-keV C60 projectiles bombarding a coarse-grained benzene system resulted in calculations of nearly identical polar angle distributions. Upon resolving the measured and calculated polar angle distributions, sputtered molecules with high kinetic energies are the primary contributors to the off-normal peak. Molecules with low kinetic energies were measured and calculated to desorb broadly peaked about the surface normal. The computer simulations suggest the fast deposition of energy from the C60 impact promotes the molecular emission by fluid-flow and effusive-type motions. The signature of off-normal emission angles is unique for molecules because fragmentation processes remove molecules that would otherwise eject near normal to the surface. Experimental measurements from a Ni {001} single crystal bombarded by 20-keV [Formula: see text] demonstrate the absence of this unique signature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA