Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Sleep ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283300

RESUMEN

STUDY OBJECTIVES: To determine any correlation between serum alpha-synuclein (α-syn) concentrations and restless legs syndrome (RLS), and to explore the impact of intravenous iron supplementation on serum α-syn levels. METHODS: We collected clinical data on 113 RLS patients in whom serum α-syn levels were quantified using an ELISA kit and compared to a group of 45 age matched controls. A subset of 9 RLS patients who received intravenous (IV) iron underwent pre- and post-treatment blood sampling to assess α-syn and ferritin response. RESULTS: Family history of RLS was reported by 62.8% of patients, and current dopaminergic augmentation was observed in 31.0%. Low serum ferritin levels below 75 µg/L were seen in 39.8%. Serum α-syn levels were found to be significantly decreased in RLS patients (mean: 7.7 ng/ml) compared to controls (mean: 10.7 ng/ml,), p<0.05. Stratification based on sex, age and age of onset, did not reveal significant differences in α-syn levels. In 9 RLS patients who received IV iron treatment, a linear correlation between fold change in α-syn and ferritin was observed (R: 0.7, p <0.05). The temporal relation between serum α-syn and IV iron treatment showed a gradual decline of α-syn and ferritin by time correlation (p = 0.023, R: -0.739). CONCLUSION: In our study of 113 RLS subjects, serum α-syn levels were decreased in RLS patients compared to healthy controls and increased in the 9 patients who received IV iron treatment in correlation with ferritin. This correlation could suggest a mechanism for reduced dopamine transmission in RLS.

2.
Quant Imaging Med Surg ; 14(9): 6806-6819, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39281177

RESUMEN

Background: The synuclein alpha (SNCA) gene responsible for encoding alpha-synuclein, is believed to play a crucial role in the pathogenesis of Parkinson's disease (PD). However, the specific impact of SNCA gene single-nucleotide polymorphisms (SNPs) on brain function in PD remains unclear. Therefore, this cross-sectional retrospective study, particularly through use of imaging analysis, aimed to characterize the relationship between SNCA gene SNPs and spontaneous brain activity in PD in order to enhance our understanding of the mechanisms underlying PD pathogenesis. Methods: A total of 63 patients with PD and 73 sex- and age-matched healthy control (HC) participants were recruited from outpatient and inpatient clinics at Fujian Medical University Union Hospital from August 2017 to November 2019, and all underwent a resting-state functional magnetic resonance imaging (rs-fMRI) scanning. All participants were also examined to determine the correlation of different genotypes with regional brain activity measured by rs-fMRI using amplitude of low-frequency fluctuation (ALFF) analysis. Multivariate regression analysis was used to calculate the correlation between the brain function data and clinical features. All rs-fMRI data were analyzed with the SPM12 software and adjusted according to the false discovery rate (FDR) at the cluster level. Results: This study included 63 patients with PD and 73 sex- and age-matched healthy participants were included in the study. The spontaneous brain activity in the right superior cerebellum (Cerebelum_Crus1_R), vermis (Vermis_7), and left supplementary motor area (Supp_Motor_Area_L) of patients in the PD group was weak compared to that in the HC group. The z-score ALFF of left central posterior gyrus was positively correlated with the Mini-Mental State Examination score (r=0.542; P<0.001) in the PD group. For rs11931074, the main genotypic effects were found in the left inferior cerebellum (Cerebellum_9_L) and right anterior cingulate and paracingulate gyri (Cingulum_Ant_R); for rs356219 and rs356165, the main genotypic effects were found in the left caudate nucleus (Caudate_L). An interaction effect of disease with genotype was found in the right inferior parietal gyrus (Parietal_Inf_R) only for rs356219. Conclusions: Our study found a correlation of the SNCA SNPs rs11931074, rs356219, and rs356165 with brain functional alterations in patients with PD. Furthermore, an interaction effect was found in the right inferior parietal gyrus only for rs356219. This study may contribute to furthering the understanding of the influence of SNCA gene SNPs on brain function in patients with PD.

3.
Front Pharmacol ; 15: 1424803, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221152

RESUMEN

Background and aim: Pathological changes in the central nervous system (CNS) begin before the clinical symptoms of Alzheimer's Disease (AD) manifest, with the hippocampus being one of the first affected structures. Current treatments fail to alter AD progression. Traditional Chinese medicine (TCM) has shown potential in improving AD pathology through multi-target mechanisms. This study investigates pathological changes in AD hippocampal tissue and explores TCM active components that may alleviate these changes. Methods: GSE5281 and GSE173955 datasets were downloaded from GEO and normalized to identify differentially expressed genes (DEGs). Key functional modules and hub genes were analyzed using Cytoscape and R. Active TCM components were identified from literature and the Pharmacopoeia of the People's Republic of China. Enrichment analyses were performed on target genes overlapping with DEGs. Result: From the datasets, 76 upregulated and 363 downregulated genes were identified. Hub genes included SLAMF, CD34, ELN (upregulated) and ATP5F1B, VDAC1, VDAC2, HSPA8, ATP5F1C, PDHA1, UBB, SNCA, YWHAZ, PGK1 (downregulated). Literature review identified 33 active components from 23 herbal medicines. Target gene enrichment and analysis were performed for six components: dihydroartemisinin, berberine, naringenin, calycosin, echinacoside, and icariside II. Conclusion: Mitochondrial to synaptic vesicle dysfunction pathways were enriched in downregulated genes. Despite downregulation, UBB and SNCA proteins accumulate in AD brains. TCM studies suggest curcumin and echinacoside may improve hippocampal pathology and cognitive impairment in AD. Further investigation into their mechanisms is needed.

4.
Transl Oncol ; 48: 102075, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098214

RESUMEN

Peritoneal tumor dissemination and subsequent malignant tumor ascites (MTA) occur unexpectedly and repeatedly in patients with gastrointestinal (GI) cancers, and worsen quality of life and prognosis of the patients. Various treatments have been clinically developed for these patients, while most of the MTA cases are refractory to the treatments. Thus, effective treatments are urgently needed to improve the clinical outcomes. In this study, we identified α-synuclein (SNCA) as an immunological determinant of MTA progression in GI cancer through translational research using mouse tumor models and clinical specimens collected from gastric cancer patients. We found that the SNCA+ subsets were significantly increased in CD3+ T cells, CD56+ NK cells, and CD11b+ myeloid cells within MTA and peripheral blood cells (PBCs) of MTA cases, albeit almost absent in PBCs of healthy donors, and spleen of naive mice. Of note, the SNCA+ T-cell subset was rarely seen in patients that intraperitoneal lavage fluid without tumor cells was collected before surgery as a tumor-free control, suggesting a possible cancer-induced product, especially within the peritoneal cavity. In vivo treatment with anti-SNCA blocking mAb significantly induced anti-tumor effects in mouse MTA models, and synergistically improved anti-PD1 therapeutic efficacy, providing a significantly better prognosis. These suggest that SNCA is involved in severe immunosuppression in the MTA cases, and that blocking SNCA is effective in dramatically improving the immune status in the hosts. Targeting SNCA will be a promising strategy to improve clinical outcomes in the treatment of GI cancer patients, especially with MTA.

5.
Pathol Res Pract ; 261: 155511, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094523

RESUMEN

Parkinson's disease is one of the vital neurodegenerative ailments attributed to a rise in Alpha-synuclein proteins leading to the advancement of motor and cognitive deterioration. Interestingly, in PD lncRNAs, miRNAs and siRNAs are also key regulators of SNCA and alpha-synuclein aggregation. This review will focus on the roles of these three types of small RNAs in trebling the development of PD through regulating SNCA expression or alpha-synuclein protein mediating the RNA from acting. Parkinson's disease is defined by the build-up of alpha-synuclein protein resulting predominantly from the elevated expression level of the SNCA gene. Non-coding RNAs have gained broad appeal as fundamental modulators of gene expression and protein aggregation dynamics, with significant implications on the aetiology of PD. LncRNAs modulate SNCA transcription and edit epigenetic modifications, while miRNA target mRNA is involved in the stability and translation of count alpha-synuclein. Considering all these data, siRNAs can achieve the precise gene silencing effect that directly induces the downregulation of SNCA mRNA. This review also summarizes some recent reports about the interaction between these ncRNAs with the SNCA gene and alpha-synuclein protein, each through its independent in addition to synergistic mechanisms. This review highlights the possibility of therapeutic interventions to perturb SNCA expression to prevent alpha-synuclein aggregation via targeting ncRNAs that might be spun off novel drug development for PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Animales , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación de la Expresión Génica
6.
Biomolecules ; 14(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39199337

RESUMEN

Alpha-synuclein (αSyn) aggregates are the primary component of Lewy bodies, which are pathological hallmarks of Parkinson's disease (PD). The toxicity of αSyn seems to increase with its elevated expression during injury, suggesting that therapeutic approaches focused on reducing αSyn burden in neurons could be beneficial. Additionally, studies have shown higher levels of SNCA mRNA in the midbrain tissues and substantia nigra dopaminergic neurons of sporadic PD post-mortem brains compared to controls. Therefore, the regulation of SNCA expression and inhibition of αSyn synthesis could play an important role in the pathogenesis of injury, resulting in an effective treatment approach for PD. In this context, we summarized the most recent and innovative strategies proposed that exploit the targeting of SNCA to regulate translation and efficiently knock down cytoplasmatic levels of αSyn. Significant progress has been made in developing antisense technologies for treating PD in recent years, with a focus on antisense oligonucleotides and short-interfering RNAs, which achieve high specificity towards the desired target. To provide a more exhaustive picture of this research field, we also reported less common but highly innovative strategies, including small molecules, designed to specifically bind 5'-untranslated regions and, targeting secondary nucleic acid structures present in the SNCA gene, whose formation can be modulated, acting as a transcription and translation control. To fully describe the efficiency of the reported strategies, the effect of αSyn reduction on cellular viability and dopamine homeostasis was also considered.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/patología , Animales , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Neuronas Dopaminérgicas/metabolismo
7.
Cell Mol Life Sci ; 81(1): 362, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162859

RESUMEN

Disease-modifying strategies for Parkinson disease (PD), the most common synucleinopathy, represent a critical unmet medical need. Accumulation of the neuronal protein alpha-synuclein (αS) and abnormal lipid metabolism have each been implicated in PD pathogenesis. Here, we elucidate how retinoid-X-receptor (RXR) nuclear receptor signaling impacts these two aspects of PD pathogenesis. We find that activated RXR differentially regulates fatty acid desaturases, significantly reducing the transcript levels of the largely brain-specific desaturase SCD5 in human cultured neural cells and PD patient-derived neurons. This was associated with reduced perilipin-2 protein levels in patient neurons, reversal of αS-induced increases in lipid droplet (LD) size, and a reduction of triglyceride levels in human cultured cells. With regard to αS proteostasis, our study reveals that RXR agonism stimulates lysosomal clearance of αS. Our data support the involvement of Polo-like kinase 2 activity and αS S129 phosphorylation in mediating this benefit. The lowering of cellular αS levels was associated with reduced cytotoxicity. Compared to RXR activation, the RXR antagonist HX531 had the opposite effects on LD size, SCD, αS turnover, and cytotoxicity, all supporting pathway specificity. Together, our findings show that RXR-activating ligands can modulate fatty acid metabolism and αS turnover to confer benefit in cellular models of PD, including patient neurons. We offer a new paradigm to investigate nuclear receptor ligands as a promising strategy for PD and related synucleinopathies.


Asunto(s)
Metabolismo de los Lípidos , Lisosomas , Neuronas , Receptores X Retinoide , Transducción de Señal , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Humanos , Lisosomas/metabolismo , Neuronas/metabolismo , Neuronas/patología , Receptores X Retinoide/metabolismo , Receptores X Retinoide/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Sinucleinopatías/metabolismo , Sinucleinopatías/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Células Cultivadas , Perilipina-2/metabolismo , Perilipina-2/genética , Fosforilación
8.
Int J Biol Macromol ; 277(Pt 4): 134417, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098688

RESUMEN

Alpha-synuclein, encoded by the SNCA gene, is a pivotal protein implicated in the pathogenesis of synucleinopathies, including Parkinson's disease. Current approaches for modulating alpha-synuclein levels involve antisense nucleotides, siRNAs, and small molecules targeting SNCA's 5'-UTR mRNA. Here, we propose a groundbreaking strategy targeting G-quadruplex structures to effectively modulate SNCA gene expression and lowering alpha-synuclein amount. Novel G-quadruplex sequences, identified on the SNCA gene's transcription starting site and 5'-UTR of SNCA mRNAs, were experimentally confirmed for their stability through biophysical assays and in vitro experiments on human genomic DNA. Biological validation in differentiated SH-SY5Y cells revealed that well-known G-quadruplex ligands remarkably stabilized these structures, inducing the modulation of SNCA mRNAs expression, and the effective decrease in alpha-synuclein amount. Besides, a novel peptide nucleic acid conjugate, designed to selectively disrupt of G-quadruplex within the SNCA gene promoter, caused a promising lowering of both SNCA mRNA and alpha-synuclein protein. Altogether our findings highlight G-quadruplexes' key role as intriguing biological targets in achieving a notable and successful reduction in alpha-synuclein expression, pointing to a novel approach against synucleinopathies.


Asunto(s)
G-Cuádruplex , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Línea Celular Tumoral , Regiones Promotoras Genéticas , Regulación de la Expresión Génica/efectos de los fármacos , Regiones no Traducidas 5'/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Ácidos Nucleicos de Péptidos/farmacología , Ácidos Nucleicos de Péptidos/química
9.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39201372

RESUMEN

Accumulating evidence suggests an involvement of sphingolipids, vital components of cell membranes and regulators of cellular processes, in the pathophysiology of both Parkinson's disease and major depressive disorder, indicating a potential common pathway in these neuropsychiatric conditions. Based on this interaction of sphingolipids and synuclein proteins, we explored the gene expression patterns of α-, ß-, and γ-synuclein in a knockout mouse model deficient for acid sphingomyelinase (ASM), an enzyme catalyzing the hydrolysis of sphingomyelin to ceramide, and studied associations with behavioral parameters. Normalized Snca, Sncb, and Sncg gene expression was determined by quantitative PCR in twelve brain regions of sex-mixed homozygous (ASM-/-, n = 7) and heterozygous (ASM+/-, n = 7) ASM-deficient mice, along with wild-type controls (ASM+/+, n = 5). The expression of all three synuclein genes was brain region-specific but independent of ASM genotype, with ß-synuclein showing overall higher levels and the least variation. Moreover, we discovered correlations of gene expression levels between brain regions and depression- and anxiety-like behavior and locomotor activity, such as a positive association between Snca mRNA levels and locomotion. Our results suggest that the analysis of synuclein genes could be valuable in identifying biomarkers and comprehending the common pathological mechanisms underlying various neuropsychiatric disorders.


Asunto(s)
Ansiedad , Encéfalo , Depresión , Modelos Animales de Enfermedad , Locomoción , Ratones Noqueados , Esfingomielina Fosfodiesterasa , Animales , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Ratones , Encéfalo/metabolismo , Depresión/genética , Depresión/metabolismo , Ansiedad/genética , Ansiedad/metabolismo , Locomoción/genética , Masculino , Sinucleínas/metabolismo , Sinucleínas/genética , Conducta Animal , Femenino , Genotipo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Ratones Endogámicos C57BL
10.
Apoptosis ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008196

RESUMEN

Cuprotosis related genes (CRGs) have been proved to be potential therapeutic targets for coronavirus disease 2019 (COVID-19) and cancer, but their immune and molecular mechanisms in COVID-19 infection in Diffuse Large B-cell Lymphoma (DLBC/DLBCL) patients are rarely reported. Our research goal is first to screen the key CRGs in COVID-19 through univariate analysis, machine learning and clinical samples. Secondly, we determined the expression and prognostic role of key CRGs in DLBCL through pan-cancer analysis. We validated the expression levels and prognosis using multiple datasets and independent clinical samples and validated the functional role of key CRGs in DLBCL through cell experiments. Finally, we validated the expression levels of CRGs in COVID-19 infected DLBCL patients samples and analyzed their common pathways in COVID-19 and DLBCL. The results show that synuclein-alpha (SNCA) is the common key differential gene of COVID-19 and DLBCL. DLBCL cells confirm that high expression of SNCA can significantly promote cell apoptosis and significantly inhibit the cycle progression of DLBCL. High expression of SNCA can regulate the binding of major histocompatibility complexes (MHCs) and T cell receptor (TCR) by regulating immune infiltration of Dendritic cells, effectively enhancing T cell-mediated anti-tumor immunity and clearing cancer cells. In conclusion, SNCA may be a potential therapeutic target for COVID-19 infection in DLBCL patients. Our study provides a theoretical basis for improving the clinical treatment of COVID-19 infection in DLBCL patients.

11.
Mol Biol Rep ; 51(1): 797, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001947

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a common neurodegenerative disorder characterized by a multifaceted genetic foundation. Genome-Wide Association Studies (GWAS) have played a crucial role in pinpointing genetic variants linked to PD susceptibility. Current study aims to delve into the mechanistic aspects through which the PD-associated Single Nucleotide Polymorphism (SNP) rs329648, identified in prior GWAS, influences the pathogenesis of PD. METHODS AND RESULTS: Employing the CRISPR/Cas9-mediated genome editing mechanism, we demonstrated the association of the disease-associated allele of rs329648 with increased expression of miR-4697-3p in differentiated SH-SY5Y cells. We revealed that miR-4697-3p contributes to the formation of high molecular weight complexes of α-Synuclein (α-Syn), indicative of α-Syn aggregate formation, as evidenced by Western blot analysis. Furthermore, our study unveiled that miR-4697-3p elevates SNCA112 mRNA levels. The resultant protein product, α-Syn 112, a variant of α-Syn with 112 amino acids, is recognized for augmenting α-Syn aggregation. Notably, this regulatory effect minimally impacts the levels of full-length SNCA140 mRNA, as evidenced by qRT-PCR. Additionally, we observed a correlation between the disease-associated allele and miR-4697-3p with increased cell death, substantiated by assessments including cell viability assays, alterations in cell morphology, and TUNEL assays. CONCLUSION: Our research reveals that the disease-associated allele of rs329648 is linked to higher levels of miR-4697-3p. This increase in miR-4697-3p leads to elevated SNCA112 mRNA levels, consequently promoting the formation of α-Syn aggregates. Furthermore, miR-4697-3p appears to play a role in increased cell death, potentially contributing to the pathogenesis of PD.


Asunto(s)
MicroARNs , Enfermedad de Parkinson , Polimorfismo de Nucleótido Simple , ARN Mensajero , alfa-Sinucleína , Humanos , Alelos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Línea Celular Tumoral , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Regulación de la Expresión Génica/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Neurobiol Dis ; 198: 106551, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38839023

RESUMEN

Multiple system atrophy (MSA) is characterized by glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-syn) in oligodendrocytes. The origin of α-syn accumulation in GCIs is unclear, in particular whether abnormal α-syn aggregates result from the abnormal elevation of endogenous α-syn expression in MSA or ingested from the neuronal source. Tubulin polymerization promoting protein (TPPP) has been reported to play a crucial role in developing GCI pathology. Here, the total cell body, nucleus, and cytoplasmic area density of SNCA and TPPP transcripts in neurons and oligodendrocytes with and without various α-syn pathologies in the pontine base in autopsy cases of MSA (n = 4) and controls (n = 2) were evaluated using RNAscope with immunofluorescence. Single-nucleus RNA-sequencing data for TPPP was evaluated using control frontal cortex (n = 3). SNCA and TPPP transcripts were present in the nucleus and cytoplasm of oligodendrocytes in both controls and diseased, with higher area density in GCIs and glial nuclear inclusions in MSA. Area densities of SNCA and TPPP transcripts were lower in neurons showing cytoplasmic inclusions in MSA. Indeed, TPPP transcripts were unexpectedly found in neurons, while the anti-TPPP antibody failed to detect immunoreactivity. Single-nucleus RNA-sequencing revealed significant TPPP transcript expression predominantly in oligodendrocytes, but also in excitatory and inhibitory neurons. This study addressed the unclear origin of accumulated α-syn in GCIs, proposing that the elevation of SNCA transcripts may supply templates for misfolded α-syn. In addition, the parallel behavior of TPPP and SNCA transcripts in GCI development highlights their potential synergistic contribution to inclusion formation. In conclusion, this study advances our understanding of MSA pathogenesis, offers insights into the dynamics of SNCA and TPPP transcripts in inclusion formation, and proposes regulating their transcripts for future molecular therapy to MSA.


Asunto(s)
Cuerpos de Inclusión , Atrofia de Múltiples Sistemas , Proteínas del Tejido Nervioso , Oligodendroglía , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Atrofia de Múltiples Sistemas/genética , Atrofia de Múltiples Sistemas/patología , Atrofia de Múltiples Sistemas/metabolismo , Humanos , Oligodendroglía/metabolismo , Oligodendroglía/patología , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Cuerpos de Inclusión/genética , Anciano , Femenino , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Anciano de 80 o más Años
13.
Neurología (Barc., Ed. impr.) ; 39(4): 321-328, May. 2024. graf
Artículo en Inglés | IBECS | ID: ibc-232514

RESUMEN

Introduction: The aim of this study was to compare the effect of five types of PEGlated nanoliposomes (PNLs) on α-synuclein (α-syn) fibrillization, attenuation of microglial activation, and silence of the SNCA gene, which encodes α-syn. Methods: To evaluate the inhibition of α-syn fibrillization, we used standard in vitro assay based on Thioflavin T (ThT) fluorescence. Next, to evaluate the attenuation of microglial activation, the concentration of TNF-a and IL-6 was quantified by ELISA assay in BV2 microglia cells treated with 100 nM A53T α-syn and PNLs. In order to determine the silencing of the SNCA, real-time PCR and Western blot analysis was used. Finally, the efficacy of PNLs was confirmed in a transgenic mouse model expressing human α-syn.Results: ThT assay showed both PNL1 and PNL2 significantly inhibited a-syn fibrillization. ELISA test also showed the production of TNF-a and IL-6 was significantly attenuated when microglial cells treated with PNL1 or PNL2. We also found that SNCA gene, at both mRNA and protein levels, was significantly silenced when BV2 microglia cells were treated with PNL1 or PNL2. Importantly, the efficacy of PNL1 and PNL2 was finally confirmed in vivo in a transgenic mouse model. Conclusions: In conclusion, the novel multifunctional nanoliposomes tested in our study inhibit α-syn fibrillization, attenuate microglial activation, and silence SNCA gene. Our findings suggest the therapeutic potential of PNL1 and PNL2 for treating synucleinopathies.(AU)


Introducción: El objetivo de este estudio fue comparar el efecto de cinco tipos de nanoliposomas PEGlados (PNL) sobre la fibrilización de la α-sinucleína (α-syn), la atenuación de la activación microglial y el silencio del gen synuclein alpha (SNCA), que codifica α-syn. Métodos: Para evaluar la inhibición de la fibrilización α-syn, utilizamos un ensayo in vitro estándar basado en la fluorescencia de la tioflavina T (ThT). A continuación, para evaluar la atenuación de la activación microglial, se cuantificó la concentración de factor de necrosis tumoral alpha (TNF-a) e interleucina 6 (IL-6)mediante ensayo ELISA en células de microglía BV2 tratadas con 100 nM de α-syn de A53T y PNL. Para determinar el silenciamiento del SNCA, se utilizó reacción en cadena de la polimerasa (PCR) en tiempo real y análisis de Western blot. Finalmente, la eficacia de las PNL se confirmó en un modelo de ratón transgénico que expresa α-syn humana. Resultados: El ensayo ThT mostró que tanto PNL1 como PNL2 inhibieron significativamente la fibrilización de α-syn. La prueba enzyme-linked immunosorbent assay (ELISA) también mostró que la producción de TNF-a e IL-6 se atenuó significativamente cuando las células microgliales se trataron con PNL1 o PNL2. También encontramos que el gen SNCA, tanto a nivel de ARN mensajero (ARNm) como de proteína, se silenciaba significativamente cuando las células de microglía BV2 se trataban con PNL1 o PNL2. Es importante destacar que la eficacia de PNL1 y PNL2 finalmente se confirmó in vivo en un modelo de ratón transgénico.Conclusiones: Los nuevos nanoliposomas multifuncionales probados en nuestro estudio inhiben la fibrilización α-syn, atenúan la activación microglial y silencian el gen SNCA. Nuestros hallazgos sugieren el potencial terapéutico de PNL1 y PNL2 para el tratamiento de sinucleinopatías.(AU)


Asunto(s)
Humanos , Sinucleínas , Liposomas , alfa-Sinucleína/genética , Microglía , Modelos Animales de Enfermedad
15.
Neurologia (Engl Ed) ; 39(4): 321-328, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38616059

RESUMEN

INTRODUCTION: The aim of this study was to compare the effect of five types of PEGlated nanoliposomes (PNLs) on α-synuclein (α-syn) fibrillization, attenuation of microglial activation, and silence of the SNCA gene, which encodes α-syn. METHODS: To evaluate the inhibition of α-syn fibrillization, we used standard in vitro assay based on Thioflavin T (ThT) fluorescence. Next, to evaluate the attenuation of microglial activation, the concentration of TNF-a and IL-6 was quantified by ELISA assay in BV2 microglia cells treated with 100nM A53T α-syn and PNLs. In order to determine the silencing of the SNCA, real-time PCR and Western blot analysis was used. Finally, the efficacy of PNLs was confirmed in a transgenic mouse model expressing human α-syn. RESULTS: ThT assay showed both PNL1 and PNL2 significantly inhibited a-syn fibrillization. ELISA test also showed the production of TNF-a and IL-6 was significantly attenuated when microglial cells treated with PNL1 or PNL2. We also found that SNCA gene, at both mRNA and protein levels, was significantly silenced when BV2 microglia cells were treated with PNL1 or PNL2. Importantly, the efficacy of PNL1 and PNL2 was finally confirmed in vivo in a transgenic mouse model. CONCLUSIONS: In conclusion, the novel multifunctional nanoliposomes tested in our study inhibit α-syn fibrillization, attenuate microglial activation, and silence SNCA gene. Our findings suggest the therapeutic potential of PNL1 and PNL2 for treating synucleinopathies.


Asunto(s)
Microglía , alfa-Sinucleína , Humanos , Animales , Ratones , alfa-Sinucleína/genética , Interleucina-6 , Modelos Animales de Enfermedad , Ratones Transgénicos
17.
Mol Brain ; 17(1): 14, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38444039

RESUMEN

Synucleinopathies refer to a group of disorders characterized by SNCA/α-synuclein (α-Syn)-containing cytoplasmic inclusions and neuronal cell loss in the nervous system including the cortex, a common feature being cognitive impairment. Still, the molecular pathogenesis of cognitive decline remains poorly understood, hampering the development of effective treatments. Here, we generated induced pluripotent stem cells (iPSCs) derived from familial Parkinson's disease (PD) patients carrying SNCA A53T mutation, differentiating them into cortical neurons by a direct conversion method. Patient iPSCs-derived cortical neurons harboring mutant α-Syn exhibited increased α-Syn-positive aggregates, shorter neurites, and time-dependent vulnerability. Furthermore, RNA-sequencing analysis, followed by biochemical validation, identified the activation of the ERK1/2 and JNK cascades in cortical neurons with SNCA A53T mutation. This result was consistent with a reverted phenotype of neuronal death in cortical neurons when treated with ERK1/2 and JNK inhibitors, respectively. Our findings emphasize the role of ERK1/2 and JNK cascades in the vulnerability of cortical neurons in synucleinopathies, and they could pave the way toward therapeutic advancements for synucleinopathies.


Asunto(s)
Sinucleinopatías , alfa-Sinucleína , Humanos , Sistema de Señalización de MAP Quinasas , Neuronas , Neuritas
18.
Mol Neurobiol ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429622

RESUMEN

Mounting evidence suggests a prominent role for alpha-synuclein (a-syn) in neuronal cell function. Alterations in the levels of cellular a-syn have been hypothesized to play a critical role in the development of Parkinson's disease (PD); however, mechanisms that control expression of the gene for a-syn (SNCA) in cis and trans as well as turnover of a-syn are not well understood. We analyzed whether methyl-CpG binding protein 2 (MeCP2), a protein that specifically binds methylated DNA, thus regulating transcription, binds at predicted binding sites in intron 1 of the SNCA gene and regulates a-syn protein expression. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility-shift assays (EMSA) were used to confirm binding of MeCP2 to regulatory regions of SNCA. Site-specific methylation and introduction of localized mutations by CRISPR/Cas9 were used to investigate the binding properties of MeCP2 in human SK-N-SH neuroblastoma cells. The significance of MeCP2 for SNCA regulation was further investigated by overexpressing MeCP2 and mutated variants of MeCP2 in MeCP2 knockout cells. We found that methylation-dependent binding of MeCP2 at a restricted region of intron 1 of SNCA had a significant impact on the production of a-syn. A single nucleotide substitution near to CpG1 strongly increased the binding of MeCP2 to intron 1 of SNCA and decreased a-syn protein expression by 60%. In contrast, deletion of a single nucleotide closed to CpG2 led to reduced binding of MeCP2 and significantly increased a-syn levels. In accordance, knockout of MeCP2 in SK-N-SH cells resulted in a significant increase in a-syn production, demonstrating that SNCA is a genomic target for MeCP2 regulation. In addition, the expression of two mutated MeCP2 variants found in Rett syndrome (RTT) showed a loss of their ability to reduce a-syn expression. This study demonstrates that methylation of CpGs and binding of MeCP2 to intron 1 of the SNCA gene plays an important role in the control of a-syn expression. In addition, the changes in SNCA regulation found by expression of MeCP2 variants carrying mutations found in RTT patients may be of importance for the elucidation of a new molecular pathway in RTT, a rare neurological disorder caused by mutations in MECP2.

19.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542193

RESUMEN

Due to the high comorbidity of Parkinson's disease (PD) with major depressive disorder (MDD) and the involvement of sphingolipids in both conditions, we investigated the peripheral expression levels of three primarily PD-associated genes: α-synuclein (SNCA), lysosomal enzyme ß-glucocerebrosidase (GBA1), and UDP-glucose ceramide glucosyltransferase (UGCG) in a sex-balanced MDD cohort. Normalized gene expression was determined by quantitative PCR in patients suffering from MDD (unmedicated n = 63, medicated n = 66) and controls (remitted MDD n = 39, healthy subjects n = 61). We observed that expression levels of SNCA (p = 0.036), GBA1 (p = 0.014), and UGCG (p = 0.0002) were higher in currently depressed patients compared to controls and remitted patients, and expression of GBA1 and UGCG decreased in medicated patients during three weeks of therapy. Additionally, in subgroups, expression was positively correlated with the severity of depression and anxiety. Furthermore, we identified correlations between the gene expression levels and PD-related laboratory parameters. Our findings suggest that SNCA, GBA1, and UGCG analysis could be instrumental in the search for biomarkers of MDD and in understanding the overlapping pathological mechanisms underlying neuro-psychiatric diseases.


Asunto(s)
Trastorno Depresivo Mayor , Glucosiltransferasas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Depresión , Trastorno Depresivo Mayor/genética , Expresión Génica , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Mutación , Enfermedad de Parkinson/metabolismo , Regulación hacia Arriba
20.
ACS Nano ; 18(11): 7837-7851, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38437635

RESUMEN

Currently, there is a lack of effective treatment for Parkinson's disease (PD). In PD patients, aberrant methylation of SNCA (α-synuclein gene) has been reported and may be a potential therapeutic target. In this study, we established an epigenetic regulation platform based on an exosomal CRISPR intervention system. With the assist of focused ultrasound (FUS) opening the blood-brain barrier, engineered exosomes carrying RVG (rabies viral glycoprotein) targeting peptide, sgRNA (single guide RNA), and dCas9-DNMT3A (named RVG-CRISPRi-Exo) were efficiently delivered into the brain lesions and induced specific methylation of SNCA. In vivo, FUS combined with RVG-CRISPRi-Exo significantly improved motor performance, balance coordination, and neurosensitivity in PD mice, greatly down-regulated the elevation of α-synuclein (α-syn) caused by modeling, rescued cell apoptosis, and alleviated the progression of PD in mice. [18F]-FP-DTBZ imaging suggested that the synaptic function of the nigrostriatal pathway could be restored, which was conducive to the control of motor behavior in PD mice. Pyrosequencing results showed that RVG-CRISPRi-Exo could methylate CpG at specific sites of SNCA, and this fine-tuned editing achieved good therapeutic effects in PD model mice. In vitro, RVG-CRISPRi-Exo down-regulated SNCA transcripts and α-syn expression and relieved neuronal cell damage. Collectively, our findings provide a proof-of-principle for the development of targeted brain nanodelivery based on engineered exosomes and provide insights into epigenetic regulation of brain diseases.


Asunto(s)
Exosomas , Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Epigénesis Genética/genética , ARN Guía de Sistemas CRISPR-Cas , Exosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA