Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 537
Filtrar
1.
J Cell Sci ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258320

RESUMEN

SMN, linked to spinal muscular atrophy, is a key component of the Gemin complex essential for snRNP assembly. Following initial snRNP assembly in the cytoplasm, both snRNPs and SMN migrate to the nucleus and associate with Cajal bodies, where final snRNP maturation occurs. It is assumed that SMN must be free from the Cajal bodies for continuous snRNP biogenesis. Previous observation of the SMN granules docked in CB suggests the existence of a separation mechanism. However, the precise processes that regulate the spatial separation of SMN-complexes from Cajal bodies remain unclear. Here we employed a super-resolution microscope alongside the beta-carboline alkaloid harmine, which disrupted the Cajal body in a reversible manner. Upon removal of harmine, SMN and Coilin first appear as small, interconnected condensates. The SMN condensates mature into spheroidal structures encircled by Coilin, eventually segregating into distinct condensates. Expression of a multimerization-deficient SMN mutant leads to enlarged, atypical Cajal bodies where SMN is unable to segregate into separate condensates. These findings underscore the importance of multimerization in facilitating the segregation of SMN from Coilin within Cajal bodies.

2.
Front Mol Neurosci ; 17: 1393779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246602

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations or deletions in the survival motoneuron 1 (SMN1) gene, resulting in deficiency of the SMN protein that is essential for motoneuron function. Smn depletion in mice disturbs axonal RNA transport and translation, thereby contributing to axon growth impairment, muscle denervation, and motoneuron degeneration. However, the mechanisms whereby Smn loss causes axonal defects remain unclear. RNA localization and translation in axons are controlled by RNA-binding proteins (RBP) and we recently observed that the neuronal RBP Ptbp2 modulates axon growth in motoneurons. Here, we identify Smn as an interactor of Ptbp2 in the cytosolic compartments of motoneurons. We show that the expression level of Ptbp2 is reduced in axons but not in the somata of Smn-depleted motoneurons. This is accompanied by reduced synthesis of the RBP hnRNP R in axons. Re-expression of Ptbp2 in axons compensates for the deficiency of Smn and rescues the defects in axon elongation and growth cone maturation observed in Smn-deficient motoneurons. Our data suggest that Ptbp2 and Smn are components of cytosolic mRNP particles, contributing to the precise spatial and temporal control of protein synthesis within axons and axon terminals.

3.
Eur J Paediatr Neurol ; 53: 18-24, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39260228

RESUMEN

OBJECTIVE: We describe outcomes following onasemnogene abeparvovec monotherapy for patients with ≥four survival motor neuron 2 (SMN2) gene copies in RESTORE, a noninterventional spinal muscular atrophy patient registry. METHODS: We evaluated baseline characteristics, motor milestone achievement, post-treatment motor function, use of ventilatory/nutritional support, and adverse events as of December 22, 2022. RESULTS: At data cutoff, 19 patients in RESTORE had ≥four SMN2 copies and were treated with onasemnogene abeparvovec monotherapy (n=12 [63.2%] four copies; n=7 [36.8%] >four copies). All patients were identified by newborn screening and were reported as asymptomatic at diagnosis. Median age at onasemnogene abeparvovec administration was 3.0 months. Median time from treatment to last recorded visit was 15.4 months, with a range of post-treatment follow-up of 0.03-39.4 months. All 12 children who were assessed for motor development achieved new milestones, including standing alone (n=2) and walking alone (n=5). Five children reported one or more treatment-emergent adverse events (one Grade 3 or greater). No deaths or use of ventilatory/nutritional support were reported. CONCLUSIONS: Real-world findings from the RESTORE registry indicate that patients with ≥four SMN2 gene copies treated with onasemnogene abeparvovec monotherapy demonstrated improvements in motor function. Adverse events experienced by these patients were consistent with previously reported findings.

4.
J Neuroimaging ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238165

RESUMEN

BACKGROUND AND PURPOSE: In recent years, there has been a growing interest in the study of resting neural networks in different neurological and mental disorders. While previous studies suggest that the default mode network (DMN) may be altered in dyscalculia, the study of resting-state networks in the development of numerical skills, especially in children with developmental dyscalculia (DD), is scarce and relatively recent. Based on this, this study examines differences in resting-state functional connectivity (rs-FC) data of children with DD using functional connectivity multivariate pattern analysis (fc-MVPA), a data-driven methodology that summarizes properties of the entire connectome. METHODS: We performed fc-MVPA on resting-state images of a sample composed of a group of children with DD (n = 19, 8.06 ± 0.87 years) and an age- and sex-matched control group of typically developing children (n = 23, 7.76 ± 0.46 years). RESULTS: Analysis of fc-MVPA showed significant differences between group connectivity profiles in two clusters allocated in both the right and left medial temporal gyrus. Post hoc effect size results revealed a decreased rs-FC between each temporal pole and the DMN in children with DD and an increased rs-FC between each temporal pole and the sensorimotor network. CONCLUSIONS: Our results suggest an aberrant information flow between resting-state networks in children with DD, demonstrating the importance of these networks for arithmetic development.

5.
Front Neurosci ; 18: 1412893, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086841

RESUMEN

Introduction: The U1 small nuclear RNA (snRNA) forms ribonucleoprotein particles (RNPs) such as U1 snRNP and U1-TAF15 snRNP. U1 snRNP is one of the most studied RNPs due to its critical role in pre-mRNA splicing in defining the 5' splice site (5'ss) of every exon through direct interactions with sequences at exon/intron junctions. Recent reports support the role of U1 snRNP in all steps of transcription, namely initiation, elongation, and termination. Functions of U1-TAF15 snRNP are less understood, though it associates with the transcription machinery and may modulate pre-mRNA splicing by interacting with the 5'ss and/or 5'ss-like sequences within the pre-mRNA. An anti-U1 antisense oligonucleotide (ASO) that sequesters the 5' end of U1 snRNA inhibits the functions of U1 snRNP, including transcription and splicing. However, it is not known if the inhibition of U1 snRNP influences post-transcriptional regulation of pre-mRNA splicing through deep intronic sequences. Methods: We examined the effect of an anti-U1 ASO that sequesters the 5' end of U1 snRNA on transcription and splicing of all internal exons of the spinal muscular atrophy (SMA) genes, SMN1 and SMN2. Our study was enabled by the employment of a multi-exon-skipping detection assay (MESDA) that discriminates against prematurely terminated transcripts. We employed an SMN2 super minigene to determine if anti-U1 ASO differently affects splicing in the context of truncated introns. Results: We observed substantial skipping of multiple internal exons of SMN1 and SMN2 triggered by anti-U1 treatment. Suggesting a role for U1 snRNP in interacting with deep intronic sequences, early exons of the SMN2 super minigene with truncated introns were resistant to anti-U1 induced skipping. Consistently, overexpression of engineered U1 snRNAs targeting the 5'ss of early SMN1 and SMN2 exons did not prevent exon skipping caused by anti-U1 treatment. Discussion: Our results uncover a unique role of the U1 snRNA-associated RNPs in splicing regulation executed through deep intronic sequences. Findings are significant for developing novel therapies for SMA based on deep intronic targets.

6.
Int J Neonatal Screen ; 10(3)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39189229

RESUMEN

Innovative treatments for spinal muscular atrophy (SMA) yield the utmost advantages only within the presymptomatic phase, underlining the significance of newborn screening (NBS). We aimed to establish statewide NBS for SMA in Serbia. Our stepwise implementation process involved technical validation of a screening assay, collaboration with patient organizations and medical professionals, a feasibility study, and negotiation with public health representatives. Over 12,000 newborns were tested during the 17-month feasibility study, revealing two unrelated SMA infants and one older sibling. All three children received therapeutic interventions during the presymptomatic phase and have shown no signs of SMA. No false-negative results were found among the negative test results. As frontrunners in this field in Serbia, we established screening and diagnostic algorithms and follow-up protocols and raised awareness among stakeholders about the importance of early disease detection, leading to the incorporation of NBS for SMA into the national program on 15 September 2023. Since then, 54,393 newborns have been tested, identifying six SMA cases and enabling timely treatment. Our study demonstrates that effective collaborations between academia, non-profit organizations, and industry are crucial in bringing innovative healthcare initiatives to fruition, and highlights the potential of NBS to revolutionize healthcare outcomes for presymptomatic SMA infants and their families.

7.
RNA Biol ; 21(1): 23-34, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39194147

RESUMEN

GEMIN5 is a multifunctional protein involved in various aspects of RNA biology, including biogenesis of snRNPs and translation control. Reduced levels of GEMIN5 confer a differential translation to selective groups of mRNAs, and biallelic variants reducing protein stability or inducing structural conformational changes are associated with neurological disorders. Here, we show that upregulation of GEMIN5 can be detrimental as it modifies the steady state of mRNAs and enhances alternative splicing (AS) events of genes involved in a broad range of cellular processes. RNA-Seq identification of the mRNAs associated with polysomes in cells with high levels of GEMIN5 revealed that a significant fraction of the differential AS events undergo translation. The association of mRNAs with polysomes was dependent on the type of AS event, being more frequent in the case of exon skipping. However, there were no major differences in the percentage of genes showing open-reading frame disruption. Importantly, differential AS events in mRNAs engaged in polysomes, eventually rendering non-functional proteins, encode factors controlling cell growth. The broad range of mRNAs comprising AS events engaged in polysomes upon GEMIN5 upregulation supports the notion that this multifunctional protein has evolved as a gene expression balancer, consistent with its dual role as a member of the SMN complex and as a modulator of protein synthesis, ultimately impinging on cell homoeostasis.


Asunto(s)
Empalme Alternativo , Polirribosomas , Biosíntesis de Proteínas , ARN Mensajero , Proteínas del Complejo SMN , Humanos , Proteínas del Complejo SMN/metabolismo , Proteínas del Complejo SMN/genética , Polirribosomas/metabolismo , Polirribosomas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Exones , Células HeLa , Regulación de la Expresión Génica
8.
Biomedicines ; 12(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39200246

RESUMEN

Spinal muscular atrophy (SMA) is a genetic disorder primarily caused by mutations in the SMN1 gene, leading to motor neuron degeneration and muscle atrophy, affecting multiple organ systems. Nusinersen treatment targets gene expression and is expected to enhance the motor function of voluntary muscles in the limbs and trunk. Motor skills can be assessed through specific scales like the Revised Upper Limb Module Scale (RULM) and Hammersmith Functional Motor Scale Expanded (HFMSE). This study aims to evaluate the influence of nusinersen on the motor skills of patients with SMA Type 2 and 3 using real-world data collected over 54 months. A prospective longitudinal study was conducted on 37 SMA patients treated with nusinersen, analyzing data with R statistical software. The outcomes revealed significant improvements in motor functions, particularly in SMA Type 3 patients with higher RULM and HFSME scores. Additionally, GEE analysis identified time, type, age, and exon deletions as essential predictors of motor score improvements. The extended observation period is both a major strength and a limitation of this research, as the dropout rates could present challenges in interpretation. Variability in responses, influenced by genetic background, SMA type, and onset age, highlights the need for personalized treatment approaches.

9.
Front Oncol ; 14: 1457832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144830

RESUMEN

The incorporation of tyrosine kinase inhibitors (TKIs) in the treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) led to significant improvement. However, in the pediatric setting, the outcomes of Ph+ ALL are still inferior compared to those of other ALL subtypes even in the TKI era due to higher relapse rate. Herein, we report a very peculiar case of late extramedullary Ph+ ALL relapse in a child, characterized by lymphomatous presentation in the tonsils and lymphoid lineage switch. The diagnostic dilemma between the occurrence of a second malignant neoplasm and the recurrence of the primary disease is further discussed, highlighting the importance of molecular backtracking analysis. This case report emphasizes the high plasticity and polyclonal nature of ALL and expands the heterogeneity of possible clinical presentation of Ph+ ALL at relapse.

10.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39201486

RESUMEN

Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.


Asunto(s)
Atrofia Muscular Espinal , Proteína 1 para la Supervivencia de la Neurona Motora , Ubiquitinación , Humanos , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Enzimas Activadoras de Ubiquitina
11.
Front Genet ; 15: 1406819, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139818

RESUMEN

Introduction: Spinal muscular atrophy (SMA) is caused by homozygous loss of the SMN1 gene with SMN2 gene copy number correlating with disease severity. Rarely SMA is caused by a deletion on one allele and a pathogenic variant on the other. The pathogenic missense variant c.5C>G (p.Ala2Gly) correlates with a mild disease phenotype that does not correlate with SMN2 copy number. In a mouse model the c.5C>G transgene produces SMN that is thought to form partially functional SMN complexes, but levels in humans have not yet been investigated. Methods: We identified two patients with mild SMA caused by a heterozygous deletion of SMN1 and the heterozygous variant, c.5C>G. Molecular findings were confirmed with deletion/duplication analysis and Sanger sequencing. Skin fibroblasts were collected and cultured, and SMN expression was analyzed using immunofluorescence. Results: Two patients with slowly progressing mild weakness were confirmed to have heterozygous pathogenic missense variant c.5C>G and a heterozygous deletion of SMN1. Their clinical presentation revealed much milder disease progression than patients with matched SMN2 copy number. Analysis of the patients' fibroblasts revealed much higher numbers of SMN nuclear complexes than a patient with a homozygous SMN1 deletion and matched SMN2 copy number. Conclusions: These case reports reinforce that the rare c.5C>G variant causes mild disease. Furthermore, the analysis of SMA nuclear gems in patient samples supports the theory that the p.Ala2Gly SMN can form partially functional SMN complexes that may carry out essential cellular functions and result in mild disease.

12.
Genes (Basel) ; 15(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39202360

RESUMEN

Spinal muscular atrophy (SMA) is a severe genetic disorder characterized by the loss of motor neurons, leading to progressive muscle weakness, loss of mobility, and respiratory complications. In its most severe forms, SMA can result in death within the first two years of life if untreated. The condition arises from mutations in the SMN1 (survival of motor neuron 1) gene, causing a deficiency in the survival motor neuron (SMN) protein. Humans possess a near-identical gene, SMN2, which modifies disease severity and is a primary target for therapies. Recent therapeutic advancements include antisense oligonucleotides (ASOs), small molecules targeting SMN2, and virus-mediated gene replacement therapy delivering a functional copy of SMN1. Additionally, recognizing SMA's broader phenotype involving multiple organs has led to the development of SMN-independent therapies. Evidence now indicates that SMA affects multiple organ systems, suggesting the need for SMN-independent treatments along with SMN-targeting therapies. No single therapy can cure SMA; thus, combination therapies may be essential for comprehensive treatment. This review addresses the SMA etiology, the role of SMN, and provides an overview of the rapidly evolving therapeutic landscape, highlighting current achievements and future directions.


Asunto(s)
Terapia Genética , Atrofia Muscular Espinal , Oligonucleótidos Antisentido , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Terapia Genética/métodos , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/genética , Animales , Marcación de Gen/métodos
13.
Genes (Basel) ; 15(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39062637

RESUMEN

In recent years, significant progress has been made in 5q Spinal Muscular Atrophy therapeutics, emphasizing the importance of early diagnosis and intervention for better clinical outcomes. Characterized by spinal cord motor neuron degeneration, 5q-SMA leads to muscle weakness, swallowing difficulties, respiratory insufficiency, and skeletal deformities. Recognizing the pre-symptomatic phases supported by screening and confirmatory genetic tests is crucial for early diagnosis. This work addresses key considerations in implementing 5q-SMA screening within the Brazilian National Newborn Screening Program and explores Brazil's unique challenges and opportunities, including genetic tests, time-to-patient referral to specialized centers, program follow-up, and treatment algorithms. We aim to guide healthcare professionals and policymakers, facilitating global discussions, including Latin American countries, and knowledge-sharing on this critical subject to improve the care for newborns identified with 5q SMA.


Asunto(s)
Atrofia Muscular Espinal , Tamizaje Neonatal , Humanos , Recién Nacido , Tamizaje Neonatal/métodos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Brasil , Pruebas Genéticas/métodos , Diagnóstico Precoz , Atención al Paciente/métodos , Atrofias Musculares Espinales de la Infancia/diagnóstico , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/terapia
14.
Int J Neonatal Screen ; 10(3)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39051405

RESUMEN

Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder causing the degeneration of motor neurons in the spinal cord. Recent studies suggest greater effectiveness of treatment in the presymptomatic stage. This systematic review synthesises findings from 37 studies (and 3 overviews) of newborn screening for SMA published up to November 2023 across 17 countries to understand the methodologies used; test accuracy performance; and timing, logistics and feasibility of screening. All studies screened for the homozygous deletion of SMN1 exon 7. Most (28 studies) used RT-PCR as the initial test on dried blood spots (DBSs), while nine studies also reported second-tier tests on DBSs for screen-positive cases. Babies testing positive on DBSs were referred for confirmatory testing via a range of methods. Observed SMA birth prevalence ranged from 1 in 4000 to 1 in 20,000. Most studies reported no false-negative or false-positive cases (therefore had a sensitivity and specificity of 100%). Five studies reported either one or two false-negative cases each (total of six cases; three compound heterozygotes and three due to system errors), although some false-negatives may have been missed due to lack of follow-up of negative results. Eleven studies reported false-positive cases, some being heterozygous carriers or potentially related to heparin use. Time to testing and treatment varied between studies. In conclusion, several countries have implemented newborn screening for SMA in the last 5 years using a variety of methods. Implementation considerations include processes for timely initial and confirmatory testing, partnerships between screening and neuromuscular centres, and timely treatment initiation.

15.
Neurol Sci ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972959

RESUMEN

Spinal muscular atrophy (SMA) is a rare neuromuscular disease, which is characterized by the degeneration of motor neurons, leading to symmetrical muscle weakness and atrophy. Description of two novel SMN1 mutations (patient1: c.683T > A, p.Leu228Ter; patient2: c.347 T > C, p.Ile116 Thr). We reported two patients with SMN1 mutations with the clinical features, and provided a literature review of the previously reported 22 cases. Two SMA patients showed progressive proximal lower limb weakness and milder clinical symptom. In a total of 22 cases, the most commonly observed SMN1 gene alteration was missense mutation (55%), followed by splicing defect (27%), nonsense (9%) and frameshift (9%). We discuss the possible decisive role of these intragenic mutations in the phenotypic results, which enriched the SMN 1 fine mutation database.

16.
Am J Hum Genet ; 111(7): 1383-1404, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38908375

RESUMEN

The neurodevelopmental disorders Prader-Willi syndrome (PWS) and Schaaf-Yang syndrome (SYS) both arise from genomic alterations within human chromosome 15q11-q13. A deletion of the SNORD116 cluster, encoding small nucleolar RNAs, or frameshift mutations within MAGEL2 result in closely related phenotypes in individuals with PWS or SYS, respectively. By investigation of their subcellular localization, we observed that in contrast to a predominant cytoplasmic localization of wild-type (WT) MAGEL2, a truncated MAGEL2 mutant was evenly distributed between the cytoplasm and the nucleus. To elucidate regulatory pathways that may underlie both diseases, we identified protein interaction partners for WT or mutant MAGEL2, in particular the survival motor neuron protein (SMN), involved in spinal muscular atrophy, and the fragile-X-messenger ribonucleoprotein (FMRP), involved in autism spectrum disorders. The interactome of the non-coding RNA SNORD116 was also investigated by RNA-CoIP. We show that WT and truncated MAGEL2 were both involved in RNA metabolism, while regulation of transcription was mainly observed for WT MAGEL2. Hence, we investigated the influence of MAGEL2 mutations on the expression of genes from the PWS locus, including the SNORD116 cluster. Thereby, we provide evidence for MAGEL2 mutants decreasing the expression of SNORD116, SNORD115, and SNORD109A, as well as protein-coding genes MKRN3 and SNRPN, thus bridging the gap between PWS and SYS.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas Intrínsecamente Desordenadas , Síndrome de Prader-Willi , Humanos , Cromosomas Humanos Par 15/genética , Citoplasma/metabolismo , Células HEK293 , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Síndrome de Prader-Willi/genética , Proteínas/genética , Proteínas/metabolismo , ARN Nucleolar Pequeño/genética
17.
Cureus ; 16(5): e59786, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38846202

RESUMEN

Spinal muscular atrophy (SMA) is a rare autosomal recessive neuromuscular disorder characterized by the loss of motor neurons in the spinal cord that results in progressive muscle weakness and atrophy. Most often, the gene involved in this disorder is the survival motor neuron (SMN1) gene, located on the telomeric regions of chromosome 5q13. This gene is involved in the processing of pre-mRNA required for the formation of dendrites and axons. Here we present the case of a 47-year-old female with an extensive past medical history of progressive muscle weakness who, after numerous specialist evaluations, was sent for germline mutation panel sequencing and analysis and was incidentally found to have a pathogenic heterozygous deletion encompassing the exon 8 region of the SMN1 gene. This case report aims to highlight the importance of timely identification and management for individuals who present with early clinical signs of the disease to reduce the morbidity and mortality associated with it.

18.
Front Immunol ; 15: 1375428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863697

RESUMEN

Spinal Muscular Atrophy (SMA), a neurodegenerative disorder, extends its impact beyond the nervous system. The central protein implicated in SMA, Survival Motor Neuron (SMN) protein, is ubiquitously expressed and functions in fundamental processes such as alternative splicing, translation, cytoskeletal dynamics and signaling. These processes are relevant for all cellular systems, including cells of the immune system such as macrophages. Macrophages are capable of modulating their splicing, cytoskeleton and expression profile in order to fulfil their role in tissue homeostasis and defense. However, less is known about impairment or dysfunction of macrophages lacking SMN and the subsequent impact on the immune system of SMA patients. We aimed to review the potential overlaps between SMN functions and macrophage mechanisms highlighting the need for future research, as well as the current state of research addressing the role of macrophages in SMA.


Asunto(s)
Macrófagos , Atrofia Muscular Espinal , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/inmunología , Animales , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Transducción de Señal
19.
Artículo en Ruso | MEDLINE | ID: mdl-38884441

RESUMEN

Advances in the treatment of spinal muscular atrophy (SMA) have revolutionized the field. SMA is a rare autosomal recessive neurodegenerative motor neuron disease in which wide phenotypic variability has been described. The rate of increase in neurological deficit and the severity of the disease is mainly determined by the amount of functional SMN (Survival of Motor Neuron) protein. However, the clinical picture may differ significantly in patients carrying homozygous deletions of the SMN1 gene (Survival of Motor Neuron 1) and an identical number of copies of the SMN2 gene (Survival of Motor Neuron 2). A family clinical case of adult patients with spinal muscular atrophy 5q with a homozygous deletion of the SMN1 gene and the same number of copies of the SMN2 gene, having a different clinical picture of the disease, is presented, and the dynamics of the condition against the background of oral pathogenetic therapy is presented.


Asunto(s)
Atrofia Muscular Espinal , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora , Humanos , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Masculino , Homocigoto , Eliminación de Gen , Adulto , Femenino , Compuestos Azo , Pirimidinas
20.
Front Neurol ; 15: 1373125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903166

RESUMEN

Objective: To investigate whether changes occur in the dynamic functional connectivity (dFC) of motor cerebellum with cerebral cortex in juvenile myoclonic epilepsy (JME). Methods: We adopted resting-state electroencephalography-functional magnetic resonance imaging (EEG-fMRI) and a sliding-window approach to explore the dFC of motor cerebellum with cortex in 36 JME patients compared with 30 and age-matched health controls (HCs). The motor cerebellum was divided into five lobules (I-V, VI, VIIb, VIIIa, and VIIIb). Additionally, correlation analyses were conducted between the variability of dFC and clinical variables in the Juvenile Myoclonic Epilepsy (JME) group, such as disease duration, age at disease onset, and frequency score of myoclonic seizures. Results: Compared to HCs, the JME group presented increased dFC between the motor cerebellum with SMN and DMN. Specifically, connectivity between lobule VIIb and left precentral gyrus and right inferior parietal lobule (IPL); between lobule VIIIa and right inferior frontal gyrus (IFG) and left IPL; and between lobule VIIIb and left middle frontal gyrus (MFG), bilateral superior parietal gyrus (SPG), and left precuneus. In addition, within the JME group, the strength of dFC between lobule VIIIb and left precuneus was negatively (r = -0.424, p = 0.025, Bonferroni correction) related with the frequency score of myoclonic seizures. Conclusion: In patients with JME, there is a functional dysregulation between the motor cerebellum with DMN and SMN, and the variability of dynamic functional connectivity may be closely associated with the occurrence of motor symptoms in JME.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA