Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915695

RESUMEN

The abnormal innate immune response is a prominent feature underlying autoimmune diseases. One emerging factor that can trigger dysregulated immune activation is cytosolic mitochondrial double-stranded RNAs (mt-dsRNAs). However, the mechanism by which mt-dsRNAs stimulate immune responses remains poorly understood. Here, we discover SRA stem-loop interacting RNA binding protein (SLIRP) as a key amplifier of mt-dsRNA-triggered antiviral signals. In autoimmune diseases, SLIRP is commonly upregulated, and targeted knockdown of SLIRP dampens the interferon response. We find that the activation of melanoma differentiation-associated gene 5 (MDA5) by exogenous dsRNAs upregulates SLIRP, which then stabilizes mt-dsRNAs and promotes their cytosolic release to activate MDA5 further, augmenting the interferon response. Furthermore, the downregulation of SLIRP partially rescues the abnormal interferon-stimulated gene expression in autoimmune patients' primary cells and makes cells vulnerable to certain viral infections. Our study unveils SLIRP as a pivotal mediator of interferon response through positive feedback amplification of antiviral signaling.

2.
Cell Rep ; 42(9): 113033, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37703176

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) is a potent transcription factor necessary for life whose activity is corrupted in diverse diseases, including cancer. STAT3 biology was presumed to be entirely dependent on its activity as a transcription factor until the discovery of a mitochondrial pool of STAT3, which is necessary for normal tissue function and tumorigenesis. However, the mechanism of this mitochondrial activity remained elusive. This study uses immunoprecipitation and mass spectrometry to identify a complex containing STAT3, leucine-rich pentatricopeptide repeat containing (LRPPRC), and SRA stem-loop-interacting RNA-binding protein (SLIRP) that is required for the stability of mature mitochondrially encoded mRNAs and transport to the mitochondrial ribosome. Moreover, we show that this complex is enriched in patients with lung adenocarcinoma and that its deletion inhibits the growth of lung cancer in vivo, providing therapeutic opportunities through the specific targeting of the mitochondrial activity of STAT3.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Mitocondrias/metabolismo , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Estabilidad del ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Mol Genet Metab Rep ; 30: 100847, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35242578

RESUMEN

As a result of a founder effect, a Leigh syndrome variant called Leigh syndrome, French-Canadian type (LSFC, MIM / 220,111) is more frequent in Saguenay-Lac-Saint-Jean (SLSJ), a geographically isolated region on northeastern Quebec, Canada. LSFC is a rare autosomal recessive mitochondrial neurodegenerative disorder due to damage in mitochondrial energy production. LSFC is caused by pathogenic variants in the nuclear gene leucine-rich pentatricopeptide repeat-containing (LRPPRC). Despite progress understanding the molecular mode of action of LRPPRC gene, there is no treatment for this disease. The present study aims to identify the biological pathways altered in the LSFC disorder through microarray-based transcriptomic profile analysis of twelve LSFC cell lines compared to twelve healthy ones, followed by gene ontology (GO) and pathway analyses. A set of 84 significantly differentially expressed genes were obtained (p ≥ 0.05; Fold change (Flc) ≥ 1.5). 45 genes were more expressed (53.57%) in LSFC cell lines compared to controls and 39 (46.43%) had lower expression levels. Gene ontology analysis highlighted altered expression of genes involved in the mitochondrial respiratory chain and energy production, glucose and lipids metabolism, oncogenesis, inflammation and immune response, cell growth and apoptosis, transcription, and signal transduction. Considering the metabolic nature of LSFC disease, genes included in the mitochondrial respiratory chain and energy production cluster stood out as the most important ones to be involved in LSFC mitochondrial disorder. In addition, the protein-protein interaction network indicated a strong interaction between the genes included in this cluster. The mitochondrial gene NDUFA4L2 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex, 4-like 2), with higher expression in LSFC cells, represents a target for functional studies to explain the role of this gene in LSFC disease. This work provides, for the first time, the LSFC gene expression profile in fibroblasts isolated from affected individuals. This represents a valuable resource to understand the pathogenic basis and consequences of LRPPRC dysfunction.

4.
FEBS J ; 288(2): 437-451, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32329962

RESUMEN

In mammalian mitochondria, messenger RNA is processed and matured from large primary transcripts in structures known as RNA granules. The identity of the factors and process transferring the matured mRNA to the mitoribosome for translation is unclear. Nascent mature transcripts are believed to associate initially with the small mitoribosomal subunit prior to recruitment of the large subunit to form the translationally active monosome. When the small subunit fails to assemble, however, the stability of mt-mRNA is only marginally affected, and under these conditions, the LRPPRC/SLIRP RNA-binding complex has been implicated in maintaining mt-mRNA stability. Here, we exploit the activity of a bacterial ribotoxin, VapC20, to show that in the absence of the large mitoribosomal subunit, mt-mRNA species are selectively lost. Further, if the small subunit is also depleted, the mt-mRNA levels are recovered. As a consequence of these data, we suggest a natural pathway for loading processed mt-mRNA onto the mitoribosome.


Asunto(s)
Toxinas Bacterianas/genética , Mitocondrias/genética , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Ribosómico 16S/genética , Ribonucleasas/genética , Toxinas Bacterianas/metabolismo , Secuencia de Bases , Transporte Biológico , Ingeniería Celular/métodos , Línea Celular , Células HEK293 , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Ribosomas Mitocondriales/ultraestructura , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neurospora crassa/química , Neurospora crassa/metabolismo , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA