Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Inherit Metab Dis ; 46(4): 744-755, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36695547

RESUMEN

Hyperinsulinism/hyperammonemia (HI/HA) syndrome has been known to be caused by dominant gain-of-function mutations in GLUD1, encoding the mitochondrial enzyme glutamate dehydrogenase. Pathogenic GLUD1 mutations enhance enzymatic activity by reducing its sensitivity to allosteric inhibition by GTP. Two recent independent studies showed that a similar HI/HA phenotype can be caused by biallelic mutations in SLC25A36, encoding pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine and guanine nucleotides across the inner mitochondrial membrane: one study reported a single case caused by a homozygous truncating mutation in SLC25A36 resulting in lack of expression of SLC25A36 in patients' fibroblasts. A second study described two siblings with a splice site mutation in SLC25A36, causing reduction of mitochondrial GTP content, putatively leading to hyperactivation of glutamate dehydrogenase. In an independent study, through combined linkage analysis and exome sequencing, we demonstrate in four individuals of two Bedouin Israeli related families the same disease-causing SLC25A36 (NM_018155.3) c.284 + 3A > T homozygous splice-site mutation found in the two siblings. We demonstrate that the mutation, while causing skipping of exon 3, does not abrogate expression of mRNA and protein of the mutant SLC25A36 in patients' blood and fibroblasts. Affected individuals had hyperinsulinism, hyperammonemia, borderline low birth weight, tonic-clonic seizures commencing around 6 months of age, yet normal intellect and no significant other morbidities. Chronic constipation, hypothyroidism, and developmental delay previously described in a single patient were not found. We thus verify that biallelic SLC25A36 mutations indeed cause HI/HA syndrome and clearly delineate the disease phenotype.


Asunto(s)
Hiperamonemia , Hiperinsulinismo , Humanos , Glutamato Deshidrogenasa , Guanosina Trifosfato/farmacología , Hiperamonemia/genética , Hiperinsulinismo/genética , Mutación , Síndrome , Proteínas de Transporte de Membrana Mitocondrial/genética
2.
J Clin Endocrinol Metab ; 107(5): 1346-1356, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-34971397

RESUMEN

CONTEXT: The hyperinsulinism/hyperammonemia (HI/HA) syndrome, the second-most common form of congenital hyperinsulinism, has been associated with dominant mutations in GLUD1, coding for the mitochondrial enzyme glutamate dehydrogenase, that increase enzyme activity by reducing its sensitivity to allosteric inhibition by GTP. OBJECTIVE: To identify the underlying genetic etiology in 2 siblings who presented with the biochemical features of HI/HA syndrome but did not carry pathogenic variants in GLUD1, and to determine the functional impact of the newly identified mutation. METHODS: The patients were investigated by whole exome sequencing. Yeast complementation studies and biochemical assays on the recombinant mutated protein were performed. The consequences of stable slc25a36 silencing in HeLa cells were also investigated. RESULTS: A homozygous splice site variant was identified in solute carrier family 25, member 36 (SLC25A36), encoding the pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine as well as guanine nucleotides across the inner mitochondrial membrane. The mutation leads to a 26-aa in-frame deletion in the first repeat domain of the protein, which abolishes transport activity. Furthermore, knockdown of slc25a36 expression in HeLa cells caused a marked reduction in the mitochondrial GTP content, which likely leads to a hyperactivation of glutamate dehydrogenase in our patients. CONCLUSION: We report for the first time a mutation in PNC2/SLC25A36 leading to HI/HA and provide functional evidence of the molecular mechanism responsible for this phenotype. Our findings underscore the importance of mitochondrial nucleotide metabolism and expand the role of mitochondrial transporters in insulin secretion.


Asunto(s)
Hiperinsulinismo Congénito , Hiperamonemia , Hiperinsulinismo , Hiperinsulinismo Congénito/genética , Glutamato Deshidrogenasa/genética , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hiperamonemia/genética , Hiperinsulinismo/genética , Hipoglucemia , Mutación , Nucleótidos
3.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576089

RESUMEN

SLC25A36 is a pyrimidine nucleotide carrier playing an important role in maintaining mitochondrial biogenesis. Deficiencies in SLC25A36 in mouse embryonic stem cells have been associated with mtDNA depletion as well as mitochondrial dysfunction. In human beings, diseases triggered by SLC25A36 mutations have not been described yet. We report the first known case of SLC25A36 deficiency in a 12-year-old patient with hypothyroidism, hyperinsulinism, hyperammonemia, chronical obstipation, short stature, along with language and general developmental delay. Whole exome analysis identified the homozygous mutation c.803dupT, p.Ser269llefs*35 in the SLC25A36 gene. Functional analysis of mutant SLC25A36 protein in proteoliposomes showed a virtually abolished transport activity. Immunoblotting results suggest that the mutant SLC25A36 protein in the patient undergoes fast degradation. Supplementation with oral uridine led to an improvement of thyroid function and obstipation, increase of growth and developmental progress. Our findings suggest an important role of SLC25A36 in hormonal regulations and oral uridine as a safe and effective treatment.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Uridina/uso terapéutico , Niño , Preescolar , Femenino , Crecimiento y Desarrollo/efectos de los fármacos , Humanos , Lactante , Recién Nacido , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mutantes/metabolismo , Transporte de Proteínas/efectos de los fármacos , Tirotropina/metabolismo , Uridina/farmacología
4.
Biochem J ; 476(11): 1585-1604, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31036718

RESUMEN

Mitochondria play a central role in the maintenance of the naive state of embryonic stem cells. Many details of the mechanism remain to be fully elucidated. Solute carrier family 25 member 36 (Slc25a36) might regulate mitochondrial function through transporting pyrimidine nucleotides for mtDNA/RNA synthesis. Its physical role in this process remains unknown; however, Slc25a36 was recently found to be highly expressed in naive mouse embryonic stem cells (mESCs). Here, the function of Slc25a36 was characterized as a maintenance factor of mESCs pluripotency. Slc25a36 deficiency (via knockdown) has been demonstrated to result in mitochondrial dysfunction, which induces the differentiation of mESCs. The expression of key pluripotency markers (Pou5f1, Sox2, Nanog, and Utf1) decreased, while that of key TE genes (Cdx2, Gata3, and Hand1) increased. Cdx2-positive cells emerged in Slc25a36-deficient colonies under trophoblast stem cell culture conditions. As a result of Slc25a36 deficiency, mtDNA of knockdown cells declined, leading to impaired mitochondria with swollen morphology, decreased mitochondrial membrane potential, and low numbers. The key transcription regulators of mitochondrial biogenesis also decreased. These results indicate that mitochondrial dysfunction leads to an inability to support the pluripotency maintenance. Moreover, down-regulated glutathione metabolism and up-regulated focal adhesion reinforced and stabilized the process of differentiation by separately enhancing OCT4 degradation and promoting cell spread. This study improves the understanding of the function of Slc25a36, as well as the relationship of mitochondrial function with naive pluripotency maintenance and stem cell fate decision.


Asunto(s)
Glutatión/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Animales , Factor de Transcripción CDX2/metabolismo , Diferenciación Celular/genética , Células Cultivadas , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Adhesiones Focales , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo
5.
J Biol Chem ; 289(48): 33137-48, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25320081

RESUMEN

The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Nucleótidos de Pirimidina/química , Nucleótidos de Pirimidina/metabolismo , Animales , Transporte Biológico Activo/fisiología , Células CHO , Cricetinae , Cricetulus , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Nucleótidos/química , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , ARN/genética , ARN/metabolismo , ARN Mitocondrial , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA