Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Bioenerg ; 1863(5): 148557, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35367451

RESUMEN

We herein report the identification of the lantanide praseodymium trivalent ion Pr3+ as inhibitor of mitochondrial transporters for basic amino acids and phylogenetically related carriers belonging to the Slc25 family. The inhibitory effect of Pr3+ has been tested using mitochondrial transporters reconstituted into liposomes being effective in the micromolar range, acting as a competitive inhibitor of the human basic amino acids carrier (BAC, Slc25A29), the human carnitine/acylcarnitine carrier (CAC, Slc25A20). Furthermore, we provide computational evidence that the complete inhibition of the transport activity of the recombinant proteins is due to the Pr3+ coordination to key acidic residues of the matrix salt bridge network. Besides being used as a first choice stop inhibitor for functional studies in vitro of mitochondrial carriers reconstituted in proteoliposomes, Pr3+ might also represent a useful tool for structural studies of the mitochondrial carrier family.


Asunto(s)
Carnitina Aciltransferasas , Praseodimio , Aminoácidos Básicos , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina Aciltransferasas/química , Humanos , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas Mitocondriales/metabolismo
2.
J Biol Chem ; 289(48): 33137-48, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25320081

RESUMEN

The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport inorganic anions, amino acids, carboxylates, nucleotides, and coenzymes across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. Here two members of this family, SLC25A33 and SLC25A36, have been thoroughly characterized biochemically. These proteins were overexpressed in bacteria and reconstituted in phospholipid vesicles. Their transport properties and kinetic parameters demonstrate that SLC25A33 transports uracil, thymine, and cytosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism and SLC25A36 cytosine and uracil (deoxy)nucleoside mono-, di-, and triphosphates by uniport and antiport. Both carriers also transported guanine but not adenine (deoxy)nucleotides. Transport catalyzed by both carriers was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. In confirmation of their identity (i) SLC25A33 and SLC25A36 were found to be targeted to mitochondria and (ii) the phenotypes of Saccharomyces cerevisiae cells lacking RIM2, the gene encoding the well characterized yeast mitochondrial pyrimidine nucleotide carrier, were overcome by expressing SLC25A33 or SLC25A36 in these cells. The main physiological role of SLC25A33 and SLC25A36 is to import/export pyrimidine nucleotides into and from mitochondria, i.e. to accomplish transport steps essential for mitochondrial DNA and RNA synthesis and breakdown.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Nucleótidos de Pirimidina/química , Nucleótidos de Pirimidina/metabolismo , Animales , Transporte Biológico Activo/fisiología , Células CHO , Cricetinae , Cricetulus , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Nucleótidos/química , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , ARN/genética , ARN/metabolismo , ARN Mitocondrial , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Curr Top Membr ; 73: 289-320, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24745987

RESUMEN

The eukaryotic transport protein family SLC25 consists of mitochondrial carriers (MCs) that are recognized on the sequence level by a threefold repeated and conserved signature motif. The majority of MCs characterized so far catalyzes strict exchanges of substrates across the mitochondrial inner membrane. The substrates are nucleotides, metabolic intermediates, and cofactors that are required in cytoplasmic and matrix metabolism. This review summarizes and discusses the current knowledge of the antiport mechanism(s) of MCs that has been deduced from determining transport characteristics and by analyzing structural, sequence, and mutagenesis data. The mode of transport varies among different MCs with respect to how the substrate translocation depends on the electrical and pH gradients across the mitochondrial inner membrane, for example, the ADP/ATP carrier is electrogenic (electrophoretic), the GTP/GDP carrier is dependent on the pH gradient, the aspartate/glutamate carrier is dependent on both, and the oxoglutarate/malate carrier is independent of them. The structure of the bovine ADP/ATP carrier consists of a six-transmembrane α-helix bundle with a pseudo-threefold symmetry and a closed matrix gate. By using this structure as a template in homology modeling, residues engaged in substrate binding and the formation of a cytoplasmic gate in MCs have been proposed. The functional importance of the residues of the binding site, the matrix, and the cytoplasmic gates is supported by transport activities of different MCs with single point mutations. Cumulative evidence has been used to postulate a general transport mechanism for MCs.


Asunto(s)
Antiportadores/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Animales , Transporte Biológico , Humanos
4.
J Biol Chem ; 289(19): 13374-84, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24652292

RESUMEN

The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.


Asunto(s)
Carnitina Aciltransferasas/química , Mitocondrias/genética , Proteínas Mitocondriales/química , Aminoácidos Básicos/química , Aminoácidos Básicos/genética , Aminoácidos Básicos/metabolismo , Transporte Biológico Activo/fisiología , Carnitina Aciltransferasas/genética , Carnitina Aciltransferasas/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Cinética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA