Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Intervalo de año de publicación
1.
Materials (Basel) ; 17(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39274635

RESUMEN

Metals manufactured by selective laser melting (SLM) with different directions exhibit different mechanical properties. This study conducted dynamic and static mechanical tests using a universal testing machine and split-Hopkinson bar (SHPB). The mechanical properties of 18Ni300 with 0° and 90° build directions manufactured by SLM were compared, and the micro-structure properties of the two build directions were analysed by metallographic tests. The Johnson-Cook (J-C) constitutive model was fitted according to the experimental results, and the obtained constitutive parameters were verified by numerical simulations. The results revealed that the constitutive model could predict the mechanical properties of 18Ni300 in a dynamic state. The build direction had little influence on the mechanical properties in a static state, but there was a significant difference in the dynamic state. The difference in the dynamic compressive yield strength of the 18Ni300 material manufactured by SLM with two build directions was 9.8%. The SLM process can be improved to produce 18Ni300 with uniform mechanical properties by studying the reasons for this difference.

2.
Sci Rep ; 14(1): 20597, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232031

RESUMEN

The objective of this study is to investigate the dynamic mechanical properties of coal and rock under deep water conditions. The research employs an enhanced Split Hopkinson Pressure Bar (SHPB) testing system. Five sets of dynamic impact experiments were conducted on coal samples under varying loading conditions to analyse the changes in dynamic strength, energy dissipation, fractal dimension and other characteristics of coal samples under different water content states were analyzed. The experimental results demonstrate that: (1) Under specific strain rate conditions, the dynamic strength of saturated coal samples is lower than that of natural coal samples. As the strain rate gradually increases, the bonding force generated by free water and the Stefan effect jointly act, and the peak strength of saturated coal samples under high strain rate loading conditions is higher than that of natural coal samples. (2) Under certain strain rate conditions, the absorption energy of saturated coal samples is approximately 10% to30% lower than that of natural coal samples, and deformation hysteresis phenomenon occurs in natural coal samples, thereby improving the dynamic strength of natural coal samples relative to saturated coal samples; (3) The fractal dimension of saturated coal samples with a specific strain rate under three-dimensional dynamic static combination loading is higher than that of natural coal samples, and the percentage of small particle coal samples with debris is higher than that of natural coal samples; Finally, based on the HJC model, some coal samples were selected to simulate the coal rock failure characteristics during the triaxial loading process using ANSYS/LS-DYNA, and their stress-strain curves and failure morphology diagrams were obtained. The discrepancy between the numerical simulation and the experimental results was less than 10%, thereby further elucidating and corroborating the coal failure process and dynamic mechanical characteristics.

3.
Materials (Basel) ; 17(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38730883

RESUMEN

Impact tests on post-fire concrete confined by Carbon Fiber-Reinforced Polymer/Plastic (CFRP) sheets were carried out by using Split Hopkinson Pressure Bar (SHPB) experimental setup in this paper, with emphasis on the effect of exposed temperatures, CFRP layers and impact velocities. Firstly, according to the measured stress-strain curves, the effects of experiment parameters on concrete dynamic mechanical performance such as compressive strength, ultimate strain and energy absorption are discussed in details. Additionally, temperature caused a softening effect on the compressive strength of concrete specimens, while CFRP confinement and strain rate play a hardening effect, which can lead to the increase in dynamic compressive strength by 1.8 to 3.6 times compared to static conditions. However, their hardening mechanisms and action stages are extremely different. Finally, nine widely accepted Dynamic Increase Factor (DIF) models considering strain rate effect were summarized, and a simplified model evaluating dynamic compressive strength of post-fire concrete confined by CFRP sheets was proposed, which can provide evidence for engineering emergency repair after fire accidents.

4.
Sci Rep ; 14(1): 8659, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622212

RESUMEN

This paper presents the investigation of the dynamic mechanical properties of coal rock under complex stress conditions at depth, based on the improved Separate Hopkinson Pressure Bar Test System. A total of 15 groups of coal samples were used to perform dynamic impact tests under different conditions. The changing rules of dynamic strength, crushing, fractal dimension and damage modes of coal under different stress conditions were analyzed. A total of nine groups of coal samples were selected for numerical simulation using ANSYS/LS-DYNA. The results show that: (1) The stress-strain curves of coal specimens under different strain rates, different confining pressures and axial pressures have basically the same trend and the curves show a certain jump forward. (2) The peak dynamic stress of the coal specimens increased linearly with the increase of strain rate and confining pressure, and the ambient pressure limited the expansion of internal cracks of the coal specimens under impact loading. Based on the experimental and simulated data, the maximum relative errors between the experimental and simulated data were determined to be 2.9578% for Group A, 6.177% for Group B, and 6.382% for Group C, respectively. (3) The damage modes of the coal samples under the three-dimensional dynamic-static combined loading were mainly "X" type and "conical" shear damage. The fractal dimension increases with the increase of strain rate, decreases with the increase of confining pressure, and first decreases and then increases with the increase of axial pressure. This research achievement can provide theoretical support for the prevention of dynamic disasters in deep coal mine engineering.

5.
Materials (Basel) ; 17(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38255589

RESUMEN

In this paper, the influence of different fiber materials on the dynamic splitting mechanical properties of concrete was investigated. Brazil disc dynamic splitting tests were conducted on plain concrete, palm fiber-reinforced concrete, and steel fiber-reinforced concrete specimens using a split Hopkinson pressure bar (SHPB) test device with a 100 mm diameter and a V2512 high-speed digital camera. The Digital Image Correlation (DIC) technique was used to analyze the fracture process and crack propagation behavior of different fiber-reinforced concrete specimens and obtain their dynamic tensile properties and energy dissipation. The experimental results indicate that the addition of fibers can enhance the impact toughness of concrete, reduce the occurrence of failure at the loading end of specimens due to stress concentration, delay the time to failure of specimens, and effectively suppress the expansion of cracks. Steel fibers exhibit a better crack-inhibiting effect on concrete compared to palm fibers. The incident energy for the three types of concrete specimens is roughly the same under the same impact pressure. Compared with plain concrete, the energy absorption rate of palm fiber concrete is decreased, while that of steel fiber concrete is increased. Palm fiber-reinforced concrete and steel fiber-reinforced concrete have lower peak strains than plain concrete under the same loading duration. The addition of steel fibers significantly impedes the internal cracking process of concrete specimens, resulting in a relatively slow growth of damage variables.

6.
Materials (Basel) ; 16(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834561

RESUMEN

Coal seam drilling is a simple, economical, and effective measure commonly used to prevent and control rock burst. Following rock burst, coal exhibits significant dynamic characteristics under high strain-rate loading. Our purpose was to determine the physical processes associated with impact damage to drilled coal rock, and its mitigation mechanism. An impact test was carried out on prefabricated borehole coal specimens, and the impulse signals of the incident and transmission rods were monitored. The crack initiation, expansion, and penetration of coal specimens were video-recorded to determine the mechanical properties, crack expansion, damage modes, fragmentation, and energy dissipation characteristics of coal specimens containing different boreholes. The dynamic compressive strength of the coal specimens was significantly weakened by boreholes under high strain-rate loading; the dynamic compressive strength and the dynamic modulus of elasticity of coal rock showed a decreasing trend, with increasing numbers of boreholes and a rising and decreasing trend with increasing borehole spacing; the number and spacing of boreholes appeared to be design parameters that could weaken coal-rock material under high strain-rate loading; during the loading of coal and rock, initial cracks appeared and expanded in the tensile stress zone of the borehole side, while secondary cracks, which appeared perpendicular to the main crack, expanded and connected, destroying the specimen. As the number of boreholes increased, the fractal dimension (D) and transmission energy decreased, while the reflection energy increased. As the borehole spacing was increased, D decreased while the reflective energy ratio decreased and increased, and the transmissive energy ratio increased and decreased. Drilling under high strain modifies the mechanical properties of impact damaged coal rock.

7.
Materials (Basel) ; 16(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569939

RESUMEN

To study the dynamic mechanical properties and damage evolution mechanism of Beishan deep granite under medium and high strain rates, dynamic mechanical tests for the deep granite specimens with different strain rates were conducted using the split Hopkinson pressure bar (SHPB) device. The improved Zhu-Wang-ang (ZWT) dynamic constitutive model was established, and the relationship between strain rate and strain energy was investigated. The test results show that the strain rate in the dynamic load test is closer to the strain rate in the rock blasting state when the uniaxial SHPB test is applied to the granite specimens in a low ground stress state. Peak stress has a linear correlation with strain rate, and the dynamic deformation modulus of the Beishan granite is 152.58 GPa. The dissipation energy per unit volume and the energy ratio increase along with the strain rate, whereas the dissipation energy per unit volume increases exponentially along with the strain rate. There is a consistent relationship between the damage degree of granite specimens and the dissipation energy per unit volume, which correspond to one another, but there is no one-to-one correspondence between the damage degree of granite specimens and the strain rate. To consider the damage and obtain the damage discount factor for the principal structure model, the principal structure of the element combination model was improved and simplified using the ZWT dynamic constitutive model. The change of damage parameters with strain rate and strain was obtained, and the dynamic damage evolution equation of Beishan granite was established by considering the damage threshold.

8.
Materials (Basel) ; 16(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37512413

RESUMEN

This paper presents an experimental study on the dynamic strength of concrete by using a split Hopkinson pressure bar. The stress-strain relationship and fragmentation degree of concrete were analyzed. The change process of the incident energy, reflection energy, transmission energy and consumption energy of concrete was calculated. The corresponding relationship between the variation of each energy and the stress state of concrete was studied. The law of energy evolution during the concrete fracture process was determined and the mechanism of concrete dynamic strength increase was revealed from the perspective of energy. The results show that the higher the strain rate, the higher the fragmentation degree of concrete, the smaller the grain diameter of fragments, the easier cracks are to pass directly through the aggregate, and the more regular the fragment shape. The change process of increasing amplitude of concrete consumption energy can reflect four mechanical states of concrete: stress increase, stress slow releasing, stress rapid releasing, and return-to-zero stress. Since the increase in reflected energy does not increase immediately with the increase in strain rate, it leads to the hysteresis of energy release in concrete, resulting in an increase in the dynamic strength of concrete.

9.
Polymers (Basel) ; 15(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37514427

RESUMEN

The addition of nano- and microfillers to carbon-fiber-reinforced polymers (CFRPs) to improve their static mechanical properties is attracting growing research interest because their introduction does not increase the weight of parts made from CFRPs. However, the current understanding of the high strain rate deformation behaviour of CFRPs containing nanofillers/microfillers is limited. The present study investigated the dynamic impact properties of carbon-fiber-reinforced phenolic composites (CFRPCs) modified with microfillers. The CFRPCs were fabricated using 2D woven carbon fibers, two phenolic resole resins (HRJ-15881 and SP-6877), and two microfillers (colloidal silica and silicon carbide (SiC)). The amount of microfillers incorporated into the CFRPCs varied from 0.0 wt.% to 2.0 wt.%. A split-Hopkinson pressure bar (SHPB), operated at momentums of 15 kg m/s and 28 kg m/s, was used to determine the impact properties of the composites. The evolution of damage in the impacted specimens was studied using optical stereomicroscope and scanning electron microscope. It was found that, at an impact momentum of 15 kg m/s, the impact properties of HRJ-15881-based CFRPCs increased with SiC addition up to 1.5 wt.%, while those of SP-6877-based composites increased only up to 0.5 wt.%. At 28 kg m/s, the impact properties of the composites increased up to 0.5 wt.% SiC addition for both SP-6877 and HRJ-15881 based composites. However, the addition of colloidal silica did not improve the dynamic impact properties of composites based on both phenolic resins at both impact momentums. The improvement in the impact properties of composites made with SiC microfiller can be attributed to improvement in crystallinity offered by the α-SiC type microfiller used in this study. No fracture was observed in specimens impacted at an impact momentum of 15 kg m/s. However, at 28 kg m/s, edge chip-off and cracks extending through the surface were observed at lower microfiller addition (≤1 wt.%), which became more pronounced at higher microfiller loading (≥1.5 wt.%).

10.
Materials (Basel) ; 16(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37297159

RESUMEN

The mechanical properties and impact resistance of conventional self-compacting concrete (SCC) need to be further improved. In order to explore the dynamic and static mechanical properties of copper-plated steel-fiber-reinforced self-compacting concrete (CPSFRSCC), the static mechanical properties and dynamic mechanical properties of CPSFRSCC with a different volume fraction of copper-plated steel fiber (CPSF) are tested, and a numerical experiment is carried out to analyze the experimental results. The results show that the mechanical properties of self-compacting concrete (SCC) can be effectively improved by adding CPSF, especially for the tensile mechanical properties. The static tensile strength of CPSFRSCC shows a trend that increases with the increase in the volume fraction of CPSF and then reaches the maximum when the volume fraction of CPSF is 3%. The dynamic tensile strength of CPSFRSCC shows a trend that increases first and then decrease with the increase in the volume fraction of CPSF, and then reaches the maximum when the volume fraction of CPSF is 2%. The results of the numerical simulation show that the failure morphology of CPSFRSCC is closely related to the content of CPSF; with the increase in the volume fraction of CPSF, the fracture morphology of the specimen gradually evolves from complete fracture to incomplete fracture.

11.
Materials (Basel) ; 16(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176473

RESUMEN

A series of conventional dynamic uniaxial compressive (CDUC) tests and coupled static dynamic loading (CSDL) tests were performed using a split Hopkinson compression bar (SHPB) system to explore the variable dynamic mechanical behavior and fracture characteristics of medium siltstone at a microscopic scale in the laboratory. In the CDUC tests, the dynamic uniaxial strength of the medium sandstone is rate-dependent in the range of 17.5 to 96.8 s-1, while the dynamic elastic modulus is not dependent on the strain rate. Then, this paper proposes a generalized model to characterize the rate-dependent strength from 17.5 to 96.8 s-1. In the CSDL tests, with increasing initial prestatic stress, the dynamic elastic modulus and dynamic strength increase nonlinearly at first and then decrease. The results show that two classical morphological types (i.e., Type I and Type II) are observed in the dynamic stress-strain response from the CDUC and CSDL tests. By scanning electron microscopy (SEM), microscopic differences in the post-loading microcrack characteristics in the behavior of Type I and Type II are identified. In Class I behavior, intergranular fracture (IF) usually initiates at or near the grains, with most cracks deflected along the grain boundaries, resulting in a sharp angular edge, and then coalesces to the main fracture surface that splits the specimen along the direction of stress wave propagation. In contrast, Class II behavior results from the combined IF and transgranular fracture (TF).

12.
Materials (Basel) ; 16(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37176267

RESUMEN

The development of island construction concrete can serve as a basis for the development and utilization of island resources. Complying with the principle of using local materials to configure seawater coral aggregate concrete (SCAC) that is able to meet the requirements of island and reef engineering construction could effectively shorten the construction period and cost of island and reef engineering construction. In this paper, quasi-static mechanical experiments and dynamic mechanical experiments were carried out on SCAC with different limestone powder contents. High-speed photography technology and Digital Image Correlation (DIC) were used to monitor the dynamic failure process and strain field of SCAC, and the influence of limestone powder content on the dynamic and static mechanical properties of SCAC was investigated. The results showed that, when the limestone powder content was 20% and 16%, the quasi-static compressive strength and quasi-static tensile strength exhibited the best improvement. Additionally, with increasing limestone powder content, the dynamic tensile strength of SCAC first showed and increasing trend and then a decreasing trend, reaching its maximum value when the limestone powder content was 16%. Moreover, the maximum strain value of SCAC with the same limestone powder content increased with increasing strain rate grade, showing an obvious effect on strain rate.

13.
Materials (Basel) ; 16(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049069

RESUMEN

Studying the mechanical behavior of rocks under real-time high-temperature conditions is of great significance for the development of energy caverns, nuclear waste disposal projects, and tunneling engineering. In this study, a real-time high-temperature impact compression test was conducted on Sejila Mountain granite to explore the effects of temperature and external load on its mechanical properties. Based on the concepts of damage mechanics and statistics, a coupled thermal-mechanical (T-M) damage constitutive model was established, which considers the temperature effect and uses the double-shear unified strength as the yield criterion. The parameter expressions were clarified, and the accuracy and applicability of the model were verified by experimental data. The research results indicated that high temperatures had an obvious damaging and deteriorating effect on the strength of the granite, while an increase in impact velocity had an enhancing effect on the strength of the granite. The established constitutive model theoretical curve and test curve showed a high degree of agreement, indicating that the coupled T-M model can objectively represent the evolution process of damage in rocks and the physical meaning of its parameters is clear.

14.
Materials (Basel) ; 16(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36984143

RESUMEN

During the excavation of underground projects, the rock masses left as the bearing support system are also subjected to dynamic loads from the excavation activities ahead. These rock masses have been damaged and fractured during the initial exposure (dynamic loads) and are subjected to static loads in the subsequent process as the support system. In this study, granite rock samples and specimens with different angles were produced, preloaded with different confining pressure, and under a combination of dynamic and static loading tests using a modified dynamic and static loading system: split Hopkinson pressure bar (SHPB). The peak strain and dynamic modulus of elasticity are weakened by the inclination angle in a similar way to the strength, with the specimens showing an evolutionary pattern from tensile strain to shear damage. The change in the inclination angle of flaws would weaken the dynamic and combined strengths, and a larger inclination flaw results in a significant decrease in its strength. Fractal analysis revealed that the fractural dimension was closely related to the fissure angle and showed a good linear correlation with the strain rate. This study will provide an important security assurance for deep mining.

15.
Polymers (Basel) ; 15(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38231997

RESUMEN

Characterized by light weight and high strength, composites are widely used as protective materials in dynamic impact loading under extreme conditions, such as high strain rates. Therefore, based on the excellent tensile properties of continuous fiber and the good flexibility and toughness of the bionic spiral structure, this study uses a multi-material 3D printer to incorporate continuous fiber, and then modifies the G-CODE file to control the printing path to achieve the production of a continuous fiber-reinforced Polylactic Acid composite helicoidal (spiral angle 60°) structure (COF-HP). Dynamic behavior under high-strain-rate impact experiments have been conducted using the Split Hopkinson Pressure Bar (SHPB). Stress-strain curves, impact energy curves and high-speed camera photographs with different strain rates at 680 s-1 and 890 s-1 have been analyzed to explore the dynamic process and illustrate the damage evolution. In addition, some detailed simulation models considering the incorporation of continuous optical fiber (COF) and different strain rates have been established and verified for deeper investigations. The results show that the COF does enhance the impact resistance of the laminates. When the porosity is reduced, the maximum stress of the continuous fiber-reinforced composite material is 4~7% higher than that of the pure PLA material. Our findings here expand the application of COF and provide a new method for designing protective materials, which have broad application prospects in the aerospace and automotive industries.

16.
Materials (Basel) ; 15(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36556726

RESUMEN

Different fractures exist widely in rock mass and play a significant role in their deformation and strength properties. Crack rocks are often subjected to dynamic disturbances, which exist in many fields of geotechnical engineering practices. In this study, dynamic compression tests were carried out on rock specimens with parallel cracks using a split hopkinson pressure bar apparatus. Tests determined the effects of strain rate and crack intensity on dynamic responses, including progressive failure behavior, rock fragmentation characteristics, and energy dissipation. Based on the crack classification method, tensile-shear mixed cracking dominates the failure of rock specimens under the action of impact loading. Increasing the flaw inclination angle from 0°-90° changes the predominant cracking mechanism from tensile cracking to mixed tensile-shear cracking. The larger the loading rate, the more obvious the cracking mechanism, which indicates that the loading rate can promote the cracking failure of rock specimens. The fragmentation analysis shows that rock samples are significantly broken at higher loading rates, and higher loading rates lead to smaller average fragment sizes; therefore, the larger the fractal dimension is, the more uniform the broken fragments of smaller sizes are. Energy utilization efficiency decreases while energy dissipation density increases with increasing strain rate. For a given loading rate, the energy absorption density and energy utilization efficiency first decrease and then increase with increasing flaw inclination, while the rockburst tendency of rock decreases initially and then increases. We also find that the elastic-plastic strain energy density increases linearly with the total input energy density, confirming that the linear energy property of granite has not been altered by the loading rate. According to this inherent property, the peak elastic strain energy of the crack specimen can be calculated accurately. On this basis, the rockburst proneness of granite can be determined quantitatively using the residual elastic energy index, and the result is consistent with the intensity of actual rockburst for the specimens.

17.
Materials (Basel) ; 15(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499967

RESUMEN

The validity of calculating the dynamic tensile strength of rock materials based on dynamic Brazilian tests is problematic. In order to gain a deeper understanding of the effects of three typical loading methods on the damage mechanism of rock specimens in the dynamic Brazilian tests, five different rocks were selected for the study. In the constant incident energy dynamic Brazilian test, the loading modes had a significant effect on the loading rate and dynamic tensile strength of the specimen, with the highest loading rate and tensile strength of the specimens under mode-III loading, followed by mode-I loading and mode-II loading. A high-speed camera and the digital image correlation (DIC) technique were used to successfully capture the rupture process of the Brazilian disc during impact loading. The evolution of the displacement and strain fields of the specimen was obtained by DIC technique, and four typical failure patterns and two rupture characteristics in the dynamic Brazilian test were summarized. The loading mode determined the crack initiation position of the specimen in the dynamic Brazilian test. The results showed that the mode-III loading is the most consistent with the Brazilian test theory, while the mode-II loading violates the test principle.

18.
Materials (Basel) ; 15(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36363210

RESUMEN

Al-Mg-Si series aluminum alloy is a heat-treatment-strengthened alloy. Research on the impact resistance of Al-Mg-Si series aluminum alloy is of great significance to expand its application in engineering. Taking 6082-T6 aluminum alloy as the concrete research object, using the split Hopkinson pressure bar (SHPB) device, the dynamic mechanical response of the material under different temperatures and average strain rates was studied, and the service performance of the material under extreme conditions was determined. The absolute temperature rise was introduced to optimize the existing constitutive model. The results show that when the environment temperature is 298.15~473.15 K under high-speed impact, the internal thermal softening effect of the material is dominant in the competition with the work hardening, resulting in a decrease in the flow stress of the material. Through the analysis of the real stress-strain curve, it was found that the elastic modulus of the material was negatively correlated with the strain rate, negatively correlated with the temperature, and showed an obvious temperature-softening effect. Yield strength was negatively correlated with temperature and positively correlated with strain rate, which showed an obvious strain rate hardening effect. Based on SEM microscopic analysis, it was found that under given conditions, adiabatic shear bands appeared in some samples, and their internal structures demonstrated obvious change. It was judged that when high-speed impact occurs, cracks are induced at the shear bands, and the cracks will continue to develop along the adiabatic shear bands, resulting in many oblique cracks which will gradually become larger and eventually lead to material failure. Finally, based on the model, the strain rate and temperature softening terms were improved, and a rise in adiabatic temperature rise was introduced. The improved model can better describe the strain rate effect of the material and accurately describe its flow stress. It provides a theoretical basis for the engineering application of materials.

19.
Polymers (Basel) ; 14(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080597

RESUMEN

Closed-cell polyvinyl chloride foam (PVC) possesses many advantages, including its light weight, moisture protection, high specific strength, high specific stiffness, and low thermal conductivity, and is widely used as the core material in composite sandwich structures. It is increasingly used in fields with light weight requirements, such as shipbuilding and aerospace. Some of these structures can be affected by the action of dynamic loads during their lifespan, such as accidental or hostile blast loads as well as wind-loaded debris shocks. Examining the material properties of PVC foams under dynamic load is essential to predict the performance of foam sandwich designs. In this study, the compressive responses of a group of PVC foams with different densities were investigated under a broad range of quasi-static conditions and high strain rates using a universal testing machine and a lengthened Split Hopkinson press bar (SHPB) fabricated from titanium alloy. The results show that the mechanical properties of foam materials are related to their density and are strain rate-sensitive. The compressive strength and plateau stress of the foams were augmented with increased foam density. In the quasi-static strain rate range, the compressive strength of PVC foams at 10-1 s-1 was 27% higher than that at 10-4 s-1. With a strain rate of 1700 s-1, the strength was 107% higher than the quasi-static value at 10-4 s-1.

20.
Materials (Basel) ; 15(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36079486

RESUMEN

Rock is the main construction material of rock engineering, such as the engineering of mines and tunnels; in addition, its mechanical properties and failure laws are of great significance to the stability evaluation of rock engineering, especially under the conditions of coupled static-static stresses. In this study, granite specimens were manufactured with artificial flaws. Coupled static and dynamic loads tests were carried out with a modified split Hopkinson pressure bar (SHPB) apparatus; and six typical levels of axial pre-stresses and three crack inclination angles were designed. Three-dimensional digital image correlation (3D-DIC) was also applied to record and analyze the fracturing process and damage evolution of the specimens. The test results show that there was no compaction stage in the stress-strain curve under combined dynamic and static loading. The dynamic strength of the specimens increased first and then decreased with the increase in the static pressure; moreover, the specimens reached the maximum dynamic strength when the static pressure was 10% UCS. The dynamic strength decreased first and then increased with the increase in the crack inclination angle; and the lowest strength appeared when the inclination angle was 45°. The change in axial compression had a significant influence on the failure mode, and the failure mode gradually transformed from shear-tensile failure to shear failure with the increase in the pre-stress. The tensile strain was usually generated at the end of the fractures or near the rock bridge. When the axial pressure was small, the tensile strain zone parallel to the loading direction was easily generated; and when the axial pressure was large, a shear strain zone developed, extending along the diagonal direction. The research results can provide a theoretical reference for the correct understanding of the failure mechanisms of granite and its engineering stability under actual conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA