Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(23): e2401292, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561948

RESUMEN

Graphite is considered to be the most auspicious anode candidate for potassium ion batteries. However, the inferior rate performances and cycling stability restrict its practical applications. Few studies have investigated the modulating the graphitization degree of graphitic materials. Herein, a nitrogen-doped carbon-coated carbon fiber composite with tunable graphitization (CNF@NC) through etching growth, in-situ oxidative polymerization, and subsequent carbonization process is reported. The prepared CNF@NC with abundant electrochemical active sites and a rapid K+/electron transfer pathway, can effectively shorten the K+ transfer distance and promote the rapid insertion/removal of K+. Amorphous domains and short-range curved graphite layers can provide ample mitigation spaces for K+ storage, alleviating the volume expansion of the highly graphitized CNF during repeated K+ insertion/de-intercalation. As expected, the CNF@NC-5 electrode presents a high initial coulombic efficiency (ICE) of 69.3%, an unprecedented reversible volumetric capacity of 510.2 mA h cm-3 at 0.1 A g-1 after 100 cycles with the mass-capacity of 294.9 mA h g-1. The K+ storage mechanism and reaction kinetic analysis are studied by combining in-situ analysis and first-principles calculation. It manifests that the K+ storage mechanism in CNF@NC-5 is an adsorption-insertion-insertion mechanism (i.e., the "1+2" model). The solid electrolyte interphase (SEI) film forming is also detected.

2.
Angew Chem Int Ed Engl ; 63(19): e202402456, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38415324

RESUMEN

The solid electrolyte interphase (SEI) membrane on the Li metal anode tends to breakdown and undergo reconstruction during operation, causing Li metal batteries to experience accelerated decay. Notably, an SEI membrane with self-healing characteristics can help considerably in stabilizing the Li-electrolyte interface; however, uniformly fixing the repairing agent onto the anode remains a challenging task. By leveraging the noteworthy film-forming attributes of bis(fluorosulfonyl)imide (FSI-) anions and the photopolymerization property of the vinyl group, the ionic liquid 1-vinyl-3-methylimidazolium bis(fluorosulfonyl)imide (VMI-FSI) was crosslinked with polyethylene oxide (PEO) in this study to form a self-healing film fixing FSI- groups as the repairing agent. When they encounter lithium metal, the FSI- groups are chemically decomposed into LiF & Li3N, which assist forming SEI membrane on lithium sheet and repairing SEI membrane in the cracks lacerated by lithium dendrite. Furthermore, the FSI- anions exchanged from film are electrochemically decomposed to generate inorganic salts to strengthen the SEI membrane. Benefiting from the self-healing behavior of the film, Li/LiCoO2 cells with the loading of 16.3 mg cm-2 exhibit the initial discharge capacities of 183.0 mAh ⋅ g-1 and are stably operated for 500 cycles with the retention rates of 81.4 % and the average coulombic efficiency of 99.97 %, operated between 3.0-4.5 V vs. Li+/Li. This study presents a new design approach for self-healing Li metal anodes and durable lithium metal battery.

3.
Angew Chem Int Ed Engl ; 62(7): e202216934, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36478517

RESUMEN

Uncontrolled dendrites growth and serious parasitic reactions in aqueous electrolytes, greatly hinder the practical application of aqueous zinc-ion battery. On the basis of in situ-chemical construction and performance-improving mechanism, multifunctional fluoroethylene carbonate (FEC) is introduced into aqueous electrolyte to construct a high-quality and ZnF2 -riched inorganic/organic hybrid SEI (ZHS) layer on Zn metal anode (ZMA) surface. Notably, FEC additive can regulate the solvated structure of Zn2+ to reduce H2 O molecules reactivity. Additionally, the ZHS layer with strong Zn2+ affinity can avoid dendrites formation and hinder the direct contact between the electrolyte and anode. Therefore, the dendrites growth, Zn corrosion, and H2 evolution reaction on ZMA in FEC-included ZnSO4 electrolyte are highly suppressed. Thus, ZMA in such electrolyte realize a long cycle life over 1000 h and deliver a stable coulombic efficiency of 99.1 % after 500 cycles.

4.
J Colloid Interface Sci ; 612: 267-276, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-34998189

RESUMEN

MXenes are the typical ions insertion-type two-dimensional (2D) nanomaterials, have attracted extensive attention in the Li+ storage field. However, the self-stacking of layered structure and the consumption of electrolyte during the process of charge/discharge will limit the Li+ diffusion dynamics, rate capability and capacity of MXenes. Herein, a Co atom protection layers with electrochemical nonreactivity were anchored on/in the surface/interlayer of titanium carbide (Ti3C2) by in-situ thermal anchoring (x-Co/m-Ti3C2, x  = 45, 65 and 85), which can not only avoid the self-stacking and expand the interlayer spacing of Ti3C2 but also reduce the consumption of Li+ and electrolyte by forming the thin solid electrolyte interphase (SEI) film. The interlayer spacing of Ti3C2 can be expanded from 0.98 to 1.21, 1.36 and 1.33 nm when the anchoring temperatures are 45, 65 and 85 °C due to the pillaring effects of Co atom layers, in where the 65-Co/m-Ti3C2 can achieve the best specific capacity and rate capability attributed to its superior diffusion coefficient of 8.8 × 10-7 cm2 s-1 in Li+ storage process. Furthermore, the 45, 65 and 85-Co/m-Ti3C2 exhibit lower SEI resistances (RSEI) as 1.45 ± 0.01, 1.26 ± 0.01 and 1.83 ± 0.01 Ω compared with the RSEI of Ti3C2 (5.18 ± 0.01 Ω), suggesting the x-Co/m-Ti3C2 demonstrates a thin SEI film due to the protection of Co atom layers. The findings propose a Co atom protection layers with electrochemical nonreactivity, not only giving an approach to expand the interlayer spacing, but also providing a protection strategy for 2D nanomaterials.

5.
ACS Appl Mater Interfaces ; 13(14): 16558-16566, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33787213

RESUMEN

In this paper, we have adopted a simple and etching-free method to prepare mesoporous carbon spheres in one step. Selenium can be deposited in the internal cavity, which can avoid pulverization due to the combined effect of volume expansion and a solid-electrolyte interphase (SEI) film while charging and discharging. Therefore, the as-prepared selenium and nitrogen codoped mesoporous carbon nanosphere (Se@NMCS) composites can deliver an outstanding sodium-storage performance of 336.6 mAh g-1 at a present density of 200 mA g-1 and great long-cycling performance. For a further understanding of the Na+ storage mechanism of the Se@NMCS anode in sodium-ion batteries (SIBs), the phase evolution of the Se@NMCS anode has been explored during the charge/discharge process by conducting in situ Raman investigation.

6.
ACS Appl Mater Interfaces ; 13(5): 6286-6297, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33504149

RESUMEN

The safety and energy density of lithium-ion batteries (LIBs) are important concerns. The use of high-capacity cathode materials, such as Ni-rich cathodes, can greatly improve the energy density of LIBs, but it also brings some safety hazards. Cylindrical 21700-type batteries using Ni-rich cathodes were employed here to investigate their high-temperature storage deterioration mechanism under different states of charge (SOCs). Electrolyte decomposition was identified as the main problem. It can be worsened by elevated storage temperatures and battery SOCs, with the latter having a more significant influence. Specifically, the decomposition of the LiPF6 solute and the carbonate solvent will induce hydrofluoric acid (HF) formation and solid-electrolyte interphase (SEI) film regeneration, respectively. HF erosion will aggravate the dissolution of transition metal ions and structural degradation of cathode materials, while the destruction/regeneration of SEI films will consume active lithium and hinder Li+ diffusion at the anode side. Besides, the self-discharge behavior will also enlarge the graphite layer spacing, thus decreasing the graphitization degree of graphite anodes and causing anode failure. These findings will aid in the development of strategies for improving the safety of LIBs with high energy density.

7.
ACS Nano ; 14(4): 4938-4949, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32271546

RESUMEN

Potassium-ion energy-storage devices are highly attractive in the large-scale energy storage field, but the intercalation of large K ions greatly worsens the stability of electrode structures and solid electrolyte interphase (SEI) films, causing slow reaction dynamics and poor durability. In this Article, inspired by bubble wraps in our life, a bubble-wrap-like carbon sheet (BPCS) with a rigid-flexible coupling porous architecture is fabricated on the microscale, exhibiting strong structural stability and good accommodation for volume expansion. In the meantime, a K2CO3·1.5H2O-dominated SEI is created by an interfacial transfer behavior of carbonate groups. These K2CO3·1.5H2O nanograins not only enhance the stability of the SEI by constructing a stable scaffold but also create more diffusion routes for K ions. On the basis of the above, using the BPCS as the anode of potassium-ion batteries delivers reversible capacities of 463 mAh g-1 at 50 mA g-1 and 195 mAh g-1 at 10 A g-1 with a long cycling life. The assembled BPCS//NPC potassium-ion hybrid capacitor exhibits a high energy density of 167 Wh kg-1 and a superior cycling capability with 80.8% capacity retention over 10 000 cycles with nearly 100% Coulombic efficiency. Even at the higher current density of 10 A g-1, the device could deliver an energy density of 92.9 Wh kg-1 over 5000 cycles at a power density of 9200 W kg-1 with only 0.002% fading per cycle, which can rival lithium-ion hybrid supercapacitors.

8.
ACS Nano ; 14(2): 1866-1878, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31967456

RESUMEN

Lithium metal batteries (LMBs) are obtaining increasing attention in view of their advantage of theoretical energy density up to 500 Wh kg-1 or higher. However, their performance exploitation is still retarded by anode dendrite growth, dead Li buildup, and electric contact loss at the interface. In order to overcome these challenges, herein, we proposed a defect engineering of a C-N polymer to construct a N-deficient ultrathin film (27 nm) with an unusually narrow bandgap (0.63 eV) as an artificial solid electrolyte interphase (SEI) by reactive thermal evaporation. This defective C-N film enables a nanostructured modulation of Li plating without severe dendrite extrusion and electric disconnection. Its high lithiophilicity is expected to trigger a desired space charge effect in the SEI with enhanced charge-transfer ability, which leads to significant reduction of both the nucleation (17.5 mV at 1 mA cm-2) and plateau overpotentials (70 mV at 3 mA cm-2) during Li plating and stripping. This interposition of a defect structure also endows Li/Cu cells with extended cycling reversibility over 400 cycles and a highly stable Coulombic efficiency of 99% at 3 mA cm-2. The interconnection preservation of the Li plating network modulated by the C-N interphase guarantees a high capacity retention of LiFePO4-based LMBs. The advantage of N-extraction from C3N4 is comprehensively discussed in combination with the results based on g-C3N4 decoration.

9.
ACS Appl Mater Interfaces ; 11(17): 15623-15629, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30945849

RESUMEN

The solid electrolyte interphase (SEI) film, which consists of the products of reduction reaction of the electrolyte, has a strong influence on the lifetime and safety of Li-ion batteries. Of particular importance when designing SEI films is its strong dependence on the electrolyte solvent. In this study, we focused on geometric isomers cis- and trans-2,3-butylene carbonates ( c/ t-BC) as model electrolytes. Despite their similar structures and chemical properties, t-BC-based electrolytes have been reported to enable the reversible reaction of graphite anodes [as in ethylene carbonate (EC)], whereas c-BC-based electrolytes cause the exfoliation of graphite [as in propylene carbonate (PC)]. To understand the microscopic origin of the different electrochemical behaviors of t-BC and c-BC, we applied Red Moon simulation to elucidate the microscopic SEI film formation processes. The results revealed that the SEI film formed in c-BC-based electrolytes contains fewer dimerized products, which are primary components of a good SEI film; this lower number of dimerized products can cause reduced film stability. As one of the origins of the decreased dimerization in c-BC, we identified the larger solvation energy of c-BC for the intermediate species and its smaller diffusion constant, which largely diminishes the dimerization. Moreover, the correlation among the Li+ intercalation behavior, nature of the SEI film, and strength of solvation was found to be common for EC/PC and t-BC/ c-BC electrolytes, confirming the importance of solvation of the intermediates in the stability of the SEI film. These results suggest that weakening the solvation of the intermediates is one possible way to stabilize the SEI film for better charge-discharge performance.

10.
Chem Rec ; 19(4): 799-810, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30897302

RESUMEN

Secondary batteries such as Li-ion battery are expected to be utilized as not only ubiquitous electric power sources such as mobile phones but also large-scale electricity storage devices. Therefore, it is urgent to develop the higher performance secondary batteries. Their lifetime and stability are found to be strongly dependent on the nature of passivation film called solid electrolyte interphase (SEI) film formed on the anode surface in the initial charge-discharge cycle. However, since it is difficult to directly observe the film formation processes in experiment, its microscopic mechanism is still not found. On the other hand, although the theoretical methods are useful complement to the experiment, some new methodologies are necessary to understand the long-term processes of SEI film, which is produced as a result of that a lot of chemical reactions proceed simultaneously. Under the circumstances, we have developed Red Moon method that can simulate such complex chemical reaction systems, and were able to analyze for the first time the SEI film formation processes on the anode surface at the atomistic level. Then, we clarified theoretically the microscopic mechanism of the additive effect which is essential to improve the Na-ion battery performance so as to enhance the SEI film formation. This new microscopic insight must provide an important guiding principle for use in designing the most suitable electrolytes for developing high-performance secondary batteries.

11.
ACS Appl Mater Interfaces ; 10(34): 28525-28532, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30070476

RESUMEN

Fluoroethylene carbonate (FEC) is an effective additive to improve the performance of Na-ion batteries (NIB). A recent experimental study has shown that a small amount of FEC enhances the NIB performance, whereas increasing the FEC amount deteriorates the performance. Toward understanding the microscopic mechanism of this observation, the dependency of the solid electrolyte interphase (SEI) film formation on the FEC concentration has been investigated in a propylene carbonate (PC)-based electrolyte solution by using the Red Moon method. This method was able to reproduce successfully the experimental observations where a small amount of FEC makes SEI film stable. Further, the increase in FEC amounts decreased the stability of the SEI film and should lead to the decrease in the NIB lifetime during charge-discharge cycles. It was revealed that this is because of the insufficient organic dimer formation between the monomer products at the higher FEC concentration. Finally, it was reconfirmed theoretically that the appropriate adjustment of FEC additive amount is essential to develop the high-performance of NIB.

12.
ACS Appl Mater Interfaces ; 9(46): 40265-40272, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29076720

RESUMEN

Metallic sodium is a promising anode for sodium-based batteries, owing to its high theoretical capacity (1165 mAh g-1) and low potential (-2.714 V vs standard hydrogen electrode). However, the growth of sodium dendrites and the infinite volume change of metallic sodium during sodium striping/plating result in a low Coulombic efficiency and poor cycling stability, generating a safety hazard of sodium-based batteries. Here, an efficient approach was proposed to simultaneously generate an artificial SEI film and 3D host for metallic sodium based on a conversion reaction (CR) between sodium and MoS2 (4Na + MoS2 = 2Na2S + Mo) at room temperature. In the resultant sodium-MoS2 hybrid after the conversion reaction (Na-MoS2 (CR)), the production Na2S is homogeneously dispersed on the surface of metallic sodium, which can act as an artificial SEI film, efficiently preventing the growth of sodium dendrites; the residual MoS2 nanosheets can construct a 3D host to confine metallic sodium, accommodating largely the volume change of sodium. Consequently, the Na-MoS2 (CR) hybrid exhibits very low overpotential of 25 mV and a very long cycle stability more than 1000 cycles. This novel strategy is promising to promote the development of metal (lithium, sodium, zinc)-based electrodes.

13.
ACS Appl Mater Interfaces ; 9(31): 25976-25984, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28714666

RESUMEN

The main issues with Li-O2 batteries are the high overpotential at the cathode and the dendrite formation at the anode during charging. Various types of redox mediators (RMs) have been proposed to reduce the charging voltage. However, the RMs tend to lose their activity during cycling owing to not only decomposition reactions but also undesirable discharge (shuttle effect) at the Li metal anode. Moreover, the dendrite growth of the Li metal anode is not resolved by merely adding RMs to the electrolytes. Here we report a simple yet highly effective method to reduce the charge overpotential while protecting the Li metal anode by incorporating LiBr and LiNO3 in a tetraglyme solvent as the electrolyte for Li-O2 cells. The Br-/Br3- couple acts as an RM to oxidize the discharge product Li2O2 at the cathode, whereas the NO3- anion oxidizes the Li metal surface to prevent the shuttle reaction. In this work, we found that both anions work synergistically in the mixed Br-/NO3- electrolyte to dramatically suppress both parasitic reactions and dendrite formation by generating a solid Li2O thin film on the Li metal anode. As a result, the charge voltage was reduced to below 3.6 V over 40 cycles. The O2 evolution during charging was more than 80% of the theoretical value, and CO2 emission during charging was negligible. After cycling, the Li metal anode showed smooth surfaces with no indication of dendrite formation. These observations clearly demonstrate that the Br-/NO3- dual-anion electrolyte can solve the problems associated with both the overpotential at the cathode and the dendrite formation at the anode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA