Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 584, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683231

RESUMEN

BACKGROUND: Sugar beet (Beta vulgaris L.) holds significant importance as a crop globally cultivated for sugar production. The genetic diversity present in sugar beet accessions plays a crucial role in crop improvement programs. METHODS AND RESULTS: During the present study, we collected 96 sugar beet accessions from different regions and extracted DNA from their leaves. Genomic DNA was amplified using SCoT primers, and the resulting fragments were separated by gel electrophoresis. The data were analyzed using various genetic diversity indices, and constructed a population STRUCTURE, applied the unweighted pair-group method with arithmetic mean (UPGMA), and conducted Principle Coordinate Analysis (PCoA). The results revealed a high level of genetic diversity among the sugar beet accessions, with 265 bands produced by the 10 SCoT primers used. The percentage of polymorphic bands was 97.60%, indicating substantial genetic variation. The study uncovered significant genetic variation, leading to higher values for overall gene diversity (0.21), genetic distance (0.517), number of effective alleles (1.36), Shannon's information index (0.33), and polymorphism information contents (0.239). The analysis of molecular variance suggested a considerable amount of genetic variation, with 89% existing within the population. Using STRUCTURE and UPGMA analysis, the sugar beet germplasm was divided into two major populations. Structure analysis partitioned the germplasm based on the origin and domestication history of sugar beet, resulting in neighboring countries clustering together. CONCLUSION: The utilization of SCoT markers unveiled a noteworthy degree of genetic variation within the sugar beet germplasm in this study. These findings can be used in future breeding programs with the objective of enhancing both sugar beet yield and quality.


Asunto(s)
Beta vulgaris , Variación Genética , Beta vulgaris/genética , Variación Genética/genética , Marcadores Genéticos , Polimorfismo Genético , Filogenia , Genética de Población/métodos , Alelos , Fitomejoramiento/métodos , ADN de Plantas/genética
2.
PhytoKeys ; 224: 1-88, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396566

RESUMEN

The dandelions from Taraxacumsect.Erythrosperma are taxonomically well distinguished and ecologically restricted to warm and sunlit habitats of steppes, dry and sandy grasslands, and distributed in temperate regions of Europe and Central Asia, with some being introduced to North America. Despite the long tradition of botanical research, the taxonomy and distribution of dandelions of T.sect.Erythrosperma is still underexplored in central Europe. In this paper, by combining traditional taxonomic studies supported by micromorphological, molecular and flow cytometry analyses as well as potential distribution modelling we shed light on taxonomical and phylogenetical relationships between members of T.sect.Erythrosperma in Poland. We also provide an identification key, species-checklist, detailed descriptions of morphology and occupated habitats as well as distribution maps for 14 Polish erythrosperms (T.bellicum, T.brachyglossum, T.cristatum, T.danubium, T.disseminatum, T.dissimile, T.lacistophyllum, T.parnassicum, T.plumbeum, T.proximum, T.sandomiriense, T.scanicum, T.tenuilobum, T.tortilobum). Finally, conservation assessments performed using the IUCN method and threat categories for all the examined species are proposed.

3.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175981

RESUMEN

Citrus collections from extreme growing regions can be an important source of tolerant germplasms for the breeding of cold-tolerant varieties. However, the efficient utilization of these germplasms requires their genetic background information. Thus, efficient marker systems are necessary for the characterization and identification of valuable accessions. In this study, the efficiency of 36 SCoT markers and 60 InDel markers were evaluated as part of the broad citrus collection of the Western Caucasus. The interspecific and intraspecific genetic diversity and genetic structures were analyzed for 172 accessions, including 31 species and sets of the locally derived cultivars. Single markers, such as SCoT18 (0.84), SCoT20 (0.93), SCoT23 (0.87), SCoT31 (0.88), SCoT36 (0.87) и LG 1-4 (0.94), LG 4-3 (0.86), LG 7-11 (0.98), and LG 8-10 (0.83), showed a high discriminating power, indicating the good applicability of these markers to assess intraspecific diversity of the genus Citrus. Overall, SCoT markers showed a higher level of polymorphism than InDel markers. According to analysis of population structure, SCoT and InDel markers showed K = 9 and K = 5 genetic clusters, respectively. The lowest levels of genetic admixtures and diversity were observed among the locally derived satsumas and lemons. The highest level of genetic admixtures was observed in the lime group. Phylogenetic relationships indicated a high level of interspecific genetic diversity but a low level of intraspecific diversity in locally derived satsumas and lemons. The results provide new insight into the origin of citrus germplasms and their distribution in colder regions. Furthermore, they are important for implementing conservation measures, controlling genetic erosion, developing breeding strategies, and improving breeding efficiency.


Asunto(s)
Citrus , Variación Genética , Citrus/genética , Filogenia , Marcadores Genéticos , Fitomejoramiento
4.
J Genet Eng Biotechnol ; 20(1): 163, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36512171

RESUMEN

BACKGROUND: Ryegrass is a promising crop for the development of meadow farming in the world. More than 1000 cultivated varieties widely used in feed production have been developed, based on the main species - perennial ryegrass (Lolium perenne L.) and annual one (Lolium multiflorum Lam.). Development and implementation of the modern methods of plant varietal and species identification are of great importance. In recent years, molecular markers have been successfully used for these purposes, which increase the accuracy of the breeding material evaluation at a significant reduction of time and labor costs. The aim of this study was to assess the discriminatory potential of the new SCoT marking technique for the identification of Russian perennial (Lolium perenne L.) and annual (Lolium multiflorum Lam.) ryegrass varieties. RESULTS: Out of the total number of the tested SCoT-primers, 8 polymorphic ones were selected, which demonstrates the high stability and reproducibly amplified DNA fragments. These primers generated 107 PCR products, where 37 were found to be polymorphic. The average number of amplicons per primer was 13. The size of the PCR products varied from 349 to 2718 bp (see Table 3). The polymorphic ratio of the tested markers was 30.8%. The marker SCoT-06 was characterized by the maximum number of PCR products and the highest level of polymorphism (50%). The effective number of alleles (ne) ranged from 1.35 to 1.58 with a mean of 1.48 per locus. The average value of the PIC and Shannon index (I) were 0.35 and 0.46, respectively. The unique PCR fragments were revealed for the identification of tested varieties. Analysis of molecular variance (AMOVA) showed that the level of genetic diversity between ryegrass species (59%) was more than between varieties within a species (41%). Based on binary matrix data, clustering and PCoA analysis (see Figs. 1 and 2) of the samples were carried out that divided them into two groups according to species. CONCLUSIONS: We found a set of markers that can be useful tools for ryegrass varieties identification. The level of intravarietal polymorphism turned out to be higher than the differences between varieties because of the possible significant heterogeneity of the varietal material. The information obtained can be used in breeding programs to create improved ryegrass varieties adapted to Russian climatic conditions.

5.
Genes (Basel) ; 13(11)2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36360279

RESUMEN

In the present study, novel genomic-SSR (g-SSR) markers generated in our laboratory were used to characterize Tinospora cordifolia and related species. The g-SSR marker was also compared with EST-SSR and SCoT markers used earlier in our laboratory to assess the genetic diversity of T. cordifolia. A total of 26 accessions of T. cordifolia and 1 accession each of Tinospora rumphii and Tinospora sinensis were characterized using 65 novel g-SSR markers. A total of 125 alleles were detected with 49 polymorphic g-SSR markers. The number of alleles per locus varied from 1-4 with a mean value of 2.55 alleles per locus. Mean PIC, gene diversity, and heterozygosity were estimated to be 0.33, 0.41, and 0.65, respectively. The two species, namely T. rumphii and T. sinensis, showed cross-species transferability of g-SSRs developed in T. cordifolia. The success rate of cross-species transferability in T. rumphii was 95.3% and 93.8% in T. sinensis, proving the usefulness of this marker in genetic diversity studies of related species. The Tinospora accessions were also used for molecular characterization using SCoT and EST-SSR markers and compared for genetic diversity and cross-species transferability. The PIC, gene diversity, heterozygosity, and principal coordinate analysis showed that g-SSR is the better maker for a genetic diversity study of T. cordifolia. Additionally, high cross-species transferability of g-SSRs was found (95.3% and 93.8%) compared to EST-SSRs (68.8% and 67.7%) in T. rumphii and T. sinensis, respectively.


Asunto(s)
Repeticiones de Microsatélite , Tinospora , Etiquetas de Secuencia Expresada , Repeticiones de Microsatélite/genética , Tinospora/genética , Alelos , Variación Genética/genética
6.
Plants (Basel) ; 11(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35567205

RESUMEN

Knowledge of the natural patterns of genetic variation and their evolutionary basis is required for sustainable management and conservation of wheat germplasm. In the current study, the genetic diversity and population structure of 100 individuals from four Triticum and Aegilops species (including T. aestivum, Ae. tauschii, Ae. cylindrica, and Ae. crassa) were investigated using two gene-based markers (start codon targeted (SCoT) polymorphism and CAAT-box derived polymorphism (CBDP)) and simple-sequence repeats (SSRs). The SCoT, CBDP, and SSR markers yielded 76, 116, and 48 polymorphism fragments, respectively. The CBDP marker had greater efficiency than the SCoT and SSR markers due to its higher polymorphism content information (PIC), resolving power (Rp), and marker index (MI). Based on an analysis of molecular variance (AMOVA) performed using all marker systems and combined data, there was a higher distribution of genetic variation within species than among them. Ae. cylindrica and Ae. tauschii had the highest values for all genetic variation parameters. A cluster analysis using each marker system and combined data showed that the SSR marker had greater efficiency in grouping of tested accessions, such that the results of principal coordinate analysis (PCoA) and population structure confirmed the obtained clustering patterns. Hence, combining the SCoT and CBDP markers with polymorphic SSR markers may be useful in genetic fingerprinting and fine mapping and for association analysis in wheat and its germplasm for various agronomic traits or tolerance mechanisms to environmental stresses.

7.
Genes (Basel) ; 14(1)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36672774

RESUMEN

Wheat (Triticum aestivum L.) is a key food crop, accounting for approximately 765 million tons produced worldwide. The present study evaluated 16 wheat genotypes using 19 morphological and phenological traits, 16 molecular markers (Inter Simple Sequence Repeats and Start Codon Targeted; ISSR and SCoT) and rbcL and matK plastid gene barcoding. The 16 wheat genotypes showed significant genetic variation using the markers assayed. Cell plot of phenological parameters revealed significant differences among the 16-day-old seedlings of wheat genotypes at Z1.1 growth stage. Collectively, W2 genotype had the lowest shoot length (SL), length of first internodes (LFI) and leaf area (LA) values, while W8 genotype had the highest diameter of first internode (DFI) and LA values. Furthermore, W7 genotype had the maximum plant biomass (PB) and leaf width (LW) values. Geometric models grouped wheat kernels into "rounded" and "nearly elongated". Estimates of heritability (H2) for these morphological characters ranged from 4.93 to 100%. The highest H2 values were recorded for root number (RN) (100%) followed by SL (88.72%), LFI (88.30%), LA (87.76%) and Feret diameter (86.68%), while the lowest H2 value was recorded for DFI (4.93%). Furthermore, highly significant genotypic and phenotypic correlations were also observed among those traits. Reproducible fingerprinting profiles and high levels of polymorphism (PPB%) of SCoT (95.46%) and ISSR (82.41%) were recorded, indicating that they are effective tools for detecting genetic variation levels among wheat genotypes. The informativeness of markers were measured through estimation of polymorphic information content (PIC), resolving power (RP) and marker index (MI). The RP and PPB% of SCoT were significantly higher compared to those of ISSR. Comparatively, the two molecular markers were effective for studying genetic diversity among wheat genotypes, but SCoT markers were more informative. Moreover, based on the two chloroplast DNA regions (rbcL and matK), MatK was found to be more reliable for differentiating among T. aestivum genotypes. Taken together, using all the studied attributes, a clear taxonomic relationship can be used to identify T. aestivum species and improve their pragmatic production and development.


Asunto(s)
Variación Genética , Triticum , Variación Genética/genética , Filogenia , Código de Barras del ADN Taxonómico , Marcadores Genéticos/genética , Genotipo
8.
Ciênc. rural (Online) ; 49(11): e20190247, 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1045276

RESUMEN

ABSTRACT: The objective of this study is to research the genetic diversity of the ' Zuijinxiang ' grape and its mutant breeding F1 plants, we screened the excellent mutant plants with potential breeding value. 50 mutated single plants obtained from 137Cs-γ irradiated 'Zuijinxiang' grape seeds were used as research objects, and SCoT molecular marker technology was used for genetic diversity and variation analysis, and clustering research was carried out. The results showed that: (1) 36 SCoT primers produced abundant polymorphisms, and the amplification results showed obvious bright bands, and the amplification efficiency and polymorphism rate were 100%. (2) A total of 221 bands were amplified by 36 primers, of which 175 were rich in polymorphism, the average polymorphic percentage was 80.3%, and the average genetic similarity coefficient was 0.916. (3) The number of observed alleles (Na) ranged from 4 to 8, with an average of 6.1389; the number of effective alleles (Ne) ranged from 1.2772 to 5.6322 with an average of 3.5968; the desired heterozygosity (He) The range is from 0.2192 to 0.8344, the average is 0.6965; the observed heterozygosity (Ho) ranges from 0.1656 to 0.7808 with an average of 0.3035; the Nei's gene diversity index (H) ranges from 0.2170 to 0.8224 with an average of 0.6863; Shannon-Wiener The index (I) ranges from 0.5186 to 1.8597 with an average of 1.4517. (4) UPGMA clustering of 51 materials showed that the test materials could be divided into three groups when the genetic distance was 0.856. The experiment shows that the genetic diversity of the 'Zuijinxiang' radiation variation germplasm resources is rich. In addition, SCoT molecular marker technology can distinguish the materials with close genetic distance, and can be used for early identification techniques of grape mutant materials. This study provides a theoretical basis for the development of excellent mutant germplasm of 'Zuijinxiang' grapes.


RESUMO: O objetivo deste estudo é investigar a diversidade genética da uva 'Zuijinxiang' e de suas plantas F1 reprodutoras mutantes. Foram selecionadas as melhores plantas mutantes com potencial e valor genético. Utilizaram-se como objeto de pesquisa 50 plantas individuais mutantes obtidas de sementes de uva irradiadas com 137Cs-γ 'Zuijinxiang', e a tecnologia de marcadores moleculares SCoT para análise de diversidade genética e variação, e foi realizada uma pesquisa de agrupamento. Os resultados mostraram que: (1) 36 iniciadores de SCoT produziram polimorfismos abundantes, e os resultados de amplificação mostraram bandas claras óbvias, e a eficiência de amplificação e taxa de polimorfismo foram de 100%. (2) Um total de 221 bandas foi amplificado por 36 iniciadores, dos quais 175 eram ricos em polimorfismo, a porcentagem polimórfica média foi de 80,3% e o coeficiente médio de similaridade genética foi de 0,916. (3) O número de alelos observados (Na) variou de 4 a 8, com uma média de 6,1389; o número de alelos efetivos (Ne) variou de 1,2772 a 5,6322 com uma média de 3,5968; a heterozigosidade desejada (He), o intervalo é de 0,2192 a 0,8344, a média é de 0,6965; a heterozigosidade observada (Ho) varia de 0,1656 a 0,7808 com uma média de 0,3035; o índice de diversidade genética (H) de Nei varia de 0,2170 a 0,8224 com uma média de 0,6863; Shannon-Wiener o índice (I) varia de 0,5186 a 1,8597 com uma média de 1,4517. (4) O agrupamento de 51 materiais da UPGMA mostrou que os materiais de teste poderiam ser divididos em três grupos quando a distância genética era de 0,856. O experimento mostra que a diversidade genética dos recursos de germoplasma de variação de radiação "Zuijinxiang" é rica. Além disso, a tecnologia de marcadores moleculares da SCoT pode distinguir os materiais com uma distância genética próxima, e pode ser usada para técnicas de identificação precoce de materiais mutantes da uva. Este estudo fornece uma base teórica para o desenvolvimento de germoplasma mutante excelente de uvas "Zuijinxiang".

9.
Front Genet ; 9: 192, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29910824

RESUMEN

Physalis is an important genus in the Solanaceae family. It includes many species of significant medicinal value, edible value, and ornamental value. However, many Physalis species are easily confused because of their similar morphological traits, which hinder the utilization and protection of Physalis resources. Therefore, it is necessary to create fast, sensitive, and reliable methods for the Physalis species authentication. Intended for that, in this study, species-specific sequence-characterized amplified region (SCAR) markers were developed for accurate identification of the closely related Physalis species P. angulata, P. minima, P. pubescens, and P. alkekengi var. franchetii, based on a simple and novel marker system, start codon targeted (SCoT) marker. A total of 34 selected SCoT primers yielded 289 reliable SCoT loci, of which 265 were polymorphic. Four species-specific SCoT fragments (SCoT3-1404, SCoT3-1589, SCoT5-550, and SCoT36-520) from Physalis species were successfully identified, cloned, and sequenced. Based on these selected specific DNA fragments, four SCAR primers pairs were developed and named ST3KZ, ST3MSJ, ST5SJ, and ST36XSJ. PCR analysis of each of these primer pairs clearly demonstrated a specific amplified band in all samples of the target Physalis species, but no amplification was observed in other Physalis species. Therefore, the species-specific SCAR primer pairs developed in this study could be used as powerful tools that can rapidly, effectively, and reliably identify and differentiate Physalis species.

10.
BMC Genet ; 18(1): 98, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29149837

RESUMEN

BACKGROUND: Assessment of genetic diversity of Vigna unguiculata (L.) Walp (cowpea) accessions using informative molecular markers is imperative for their genetic improvement and conservation. Use of efficacious molecular markers to obtain the required knowledge of the genetic diversity within the local and regional germplasm collections can enhance the overall effectiveness of cowpea improvement programs, hence, the comparative assessment of Inter-simple sequence repeat (ISSR) and Start codon targeted (SCoT) markers in genetic diversity of V. unguiculata accessions from different regions in Nigeria. Comparative analysis of the genetic diversity of eighteen accessions from different locations in Nigeria was investigated using ISSR and SCoT markers. DNA extraction was done using Zymogen Kit according to its manufacturer's instructions followed by amplifications with ISSR and SCoT and agarose gel electrophoresis. The reproducible bands were scored for analyses of dendrograms, principal component analysis, genetic diversity, allele frequency, polymorphic information content, and population structure. RESULTS: Both ISSR and SCoT markers resolved the accessions into five major clusters based on dendrogram and principal component analyses. Alleles of 32 and 52 were obtained with ISSR and SCoT, respectively. Numbers of alleles, gene diversity and polymorphic information content detected with ISSR were 9.4000, 0.7358 and 0.7192, while SCoT yielded 11.1667, 0.8158 and 0.8009, respectively. Polymorphic loci were 70 and 80 in ISSR and SCoT, respectively. Both markers produced high polymorphism (94.44-100%). The ranges of effective number of alleles (Ne) were 1.2887 ± 0.1797-1.7831 ± 0.2944 and 1.7416 ± 0.0776-1.9181 ± 0.2426 in ISSR and SCoT, respectively. The Nei's genetic diversity (H) ranged from 0.2112 ± 0.0600-0.4335 ± 0.1371 and 0.4111 ± 0.0226-0.4778 ± 0.1168 in ISSR and SCoT, respectively. Shannon's information index (I) from ISSR and SCoT were 0.3583 ± 0.0639-0.6237 ± 0.1759 and 0.5911 ± 0.0233-0.6706 ± 0.1604. Total gene diversity (Ht), gene diversity within population (Hs), coefficient of gene differentiation (Gst) and level of gene flow (Nm) revealed by ISSR were 0.4498, 0.3203, 0.2878 and 1.2371 respectively, while SCoT had 0.4808, 0.4522, 0.0594 and 7.9245. CONCLUSIONS: Both markers showed highest genetic diversity in accessions from Ebonyi. Our study demonstrated that SCoT markers were more efficient than ISSR for genetic diversity studies in V. unguiculata and can be integrated in the exploration of their genetic diversity for improvement and germplasm utilization.


Asunto(s)
Codón Iniciador , Repeticiones de Microsatélite , Vigna/clasificación , Vigna/genética , Variación Genética , Nigeria , Preservación Biológica , Banco de Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA