Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Sensors (Basel) ; 24(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39123815

RESUMEN

Surface subsidence hazards in mining areas are common geological disasters involving issues such as vegetation degradation and ground collapse during the mining process, which also raise safety concerns. To address the accuracy issues of traditional prediction models and study methods for predicting subsidence in open-pit mining areas, this study first employed 91 scenes of Sentinel-1A ascending and descending orbits images to monitor long-term deformations of a phosphate mine in Anning City, Yunnan Province, southwestern China. It obtained annual average subsidence rates and cumulative surface deformation values for the study area. Subsequently, a two-dimensional deformation decomposition was conducted using a time-series registration interpolation method to determine the distribution of vertical and east-west deformations. Finally, three prediction models were employed: Back Propagation Neural Network (BPNN), BPNN optimized by Genetic Algorithm (GA-BP), and BPNN optimized by Artificial Bee Colony Algorithm (ABC-BP). These models were used to forecast six selected time series points. The results indicate that the BPNN model had Mean Absolute Errors (MAE) and Root Mean Squared Errors (RMSE) within 7.6 mm, while the GA-BP model errors were within 3.5 mm, and the ABC-BP model errors were within 3.7 mm. Both optimized models demonstrated significantly improved accuracy and good predictive capabilities.

2.
Sensors (Basel) ; 24(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123918

RESUMEN

The realization of a harmonious relationship between the natural environment and economic development has always been the unremitting pursuit of traditional mineral resource-based cities. With rich reserves of iron and coal ore resources, Laiwu has become an important steel production base in Shandong Province in China, after several decades of industrial development. However, some serious environmental problems have occurred with the quick development of local steel industries, with ground subsidence and consequent secondary disasters as the most representative ones. To better evaluate possible ground collapse risk, comprehensive approaches incorporating the common deformation monitoring with small-baseline subset (SBAS)-synthetic aperture radar interferometry (InSAR) technique, environmental factors analysis, and risk evaluation are designed here with ALOS PALSAR and Sentinel-1 SAR observations. A retrospect on the ground deformation process indicates that ground deformation has largely decreased by around 51.57% in area but increased on average by around -5.4 mm/year in magnitude over the observation period of Sentinel-1 (30 July 2015 to 22 August 2022), compared to that of ALOS PALSAR (17 January 2007 to 28 October 2010). To better reveal the potential triggering mechanism, environmental factors are also utilized and conjointly analyzed with the ground deformation time series. These analysis results indicate that the ground deformation signals are highly correlated with human industrial activities, such underground mining, and the operation of manual infrastructures (landfill, tailing pond, and so on). In addition, the evaluation demonstrates that the area with potential collapse risk (levels of medium, high, and extremely high) occupies around 8.19 km2, approximately 0.86% of the whole study region. This study sheds a bright light on the safety guarantee for the industrial operation and the ecologically friendly urban development of traditional steel production industrial cities in China.

3.
Sensors (Basel) ; 24(16)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39205023

RESUMEN

Due to its unique geographical location and rapid urbanization, Xiamen is particularly susceptible to geological disasters. This study employs 80 Sentinel-1A SAR images covering Xiamen spanning from May 2017 to December 2023 for comprehensive dynamic monitoring of the land subsidence. PS-InSAR and SBAS-InSAR techniques were utilized to derive the surface deformation field and time series separately, followed by a comparative analysis of their results. SBAS-InSAR was finally chosen in this study for its higher coherence. Based on its results, we conducted cause analysis and obtained the following findings. (1) The most substantial subsidence occurred in Maluan Bay and Dadeng Island, where the maximum subsidence rate was 24 mm/yr and the maximum cumulative subsidence reached 250 mm over the course of the study. Additionally, regions exhibiting subsidence rates ranging from 10 to 30 mm/yr included Yuanhai Terminal, Maluan Bay, Xitang, Guanxun, Jiuxi entrance, Yangtang, the southeastern part of Dadeng Island, and Yundang Lake. (2) Geological structure, groundwater extraction, reclamation and engineering construction all have impacts on land subsidence. The land subsidence of fault belts and seismic focus areas was significant, and the area above the clay layer settled significantly. Both direct and indirect analysis can prove that as the amount of groundwater extraction increases, the amount of land subsidence increases. Significant subsidence is prone to occur after the initial land reclamation, during the consolidation period of the old fill materials, and after land compaction. The construction changes the soil structure, and the appearance of new buildings increases the risk of subsidence.

4.
Environ Sci Pollut Res Int ; 31(40): 52815-52826, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39160409

RESUMEN

The subsidence of the earth's surface in mining areas is characterized by fast speed and large gradients. Conventional small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) monitoring can significantly underestimate results, making it challenging to capture the surface's temporal subsidence features. In this context, this paper proposes a method for monitoring subsidence in mining areas. It utilizes a phase unwrapping network (PUNet) and a fused Weibull model within the SBAS-InSAR framework to address nonlinear and large-gradient subsidence. The basic principle of this method is to first process the SAR images using the small baseline method to obtain the differential interferogram, utilizing the PUNet to obtain reliable large-gradient unwrapped phases. Next, the Weibull model parameters of each pixel are calculated based on the unwrapped phase, and the temporal subsidence of each point on the surface is determined using the calculated parameters. This method introduces a nonlinear model into the SBAS-InSAR solution, which is more consistent with the subsidence characteristics of mining areas. Through experimentation in a backfilled mining working face, the proposed method in this paper yields superior monitoring results compared to conventional approaches.


Asunto(s)
Monitoreo del Ambiente , Minería , Monitoreo del Ambiente/métodos , Modelos Teóricos , Radar
5.
Sensors (Basel) ; 24(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39000836

RESUMEN

Geohazards that have developed in densely vegetated alpine gorges exhibit characteristics such as remote occurrence, high concealment, and cascading effects. Utilizing a single remote sensing datum for their identification has limitations, while utilizing multiple remote sensing data obtained based on different sensors can allow comprehensive and accurate identification of geohazards in such areas. This study takes the Latudi River valley, a tributary of the Nujiang River in the Hengduan Mountains, as the research area, and comprehensively uses three techniques of remote sensing: unmanned aerial vehicle (UAV) Light Detection and Ranging (LiDAR), Small Baseline Subset interferometric synthetic aperture radar (SBAS-InSAR), and UAV optical remote sensing. These techniques are applied to comprehensively identify and analyze landslides, rockfalls, and debris flows in the valley. The results show that a total of 32 geohazards were identified, including 18 landslides, 8 rockfalls, and 6 debris flows. These hazards are distributed along the banks of the Latudi River, significantly influenced by rainfall and distribution of water systems, with deformation variables fluctuating with rainfall. The three types of geohazards cause cascading disasters, and exhibit different characteristics in the 0.5 m resolution hillshade map extracted from LiDAR data. UAV LiDAR has advantages in densely vegetated alpine gorges: after the selection of suitable filtering algorithms and parameters of the point cloud, it can obtain detailed terrain and geomorphological information on geohazards. The different remote sensing technologies used in this study can mutually confirm and complement each other, enhancing the capability to identify geohazards and their associated hazard cascades in densely vegetated alpine gorges, thereby providing valuable references for government departments in disaster prevention and reduction work.

6.
Sensors (Basel) ; 24(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38676251

RESUMEN

With the acceleration of urbanisation, urban areas are subject to the combined effects of the accumulation of various natural factors, such as changes in temperature leading to the thermal expansion or contraction of surface materials (rock, soil, etc.) and changes in precipitation and humidity leading to an increase in the self-weight of soil due to the infiltration of water along the cracks or pores in the ground. Therefore, the subsidence of urban areas has now become a serious geological disaster phenomenon. However, the use of traditional neural network prediction models has limitations when examining the causal relationships between time series surface deformation data and multiple influencing factors and when applying multiple influencing factors for predictive analyses. To this end, Sentinel-1A data from March 2017 to February 2023 were used as the data source in this paper, based on time series deformation data acquired using the small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) technique. A sparrow search algorithm-convolutional neural network-long short-term memory (SSA-CNN-LSTM) neural network prediction model was built. The six factors of temperature, humidity, precipitation, and ground temperature at three different depths below the surface (5 cm, 10 cm, and 15 cm) were taken as the input of the model, and the surface deformation data were taken as the output of the neural network model. The correlation between the spatial and temporal evolution characteristics of the ground subsidence in urban areas and various influencing factors was analysed using grey correlation analysis, which proved that these six factors contribute to some extent to the deformation of the urban surface. The main urban area of Hohhot City, Inner Mongolia Autonomous Region, was used as the study area. In order to verify the efficacy of this neural network prediction model, the prediction effects of the multilayer perceptron (MLP), backpropagation (BP), and SSA-CNN-LSTM models were compared and analysed, with the values of the correlation coefficients of the feature points of A1, B1, and C1 being in the range of 0.92, 0.83, and 0.93, respectively. The results show that compared with the traditional MLP and BP neural network models, the SSA-CNN-LSTM model achieves a higher performance in predicting time series surface deformation data in urban areas, which provides new ideas and methods for this area of research.

7.
Sensors (Basel) ; 24(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38676254

RESUMEN

Monitoring ground displacements identifies potential geohazard risks early before they cause critical damage. Interferometric synthetic aperture radar (InSAR) is one of the techniques that can monitor these displacements with sub-millimeter accuracy. However, using the InSAR technique is challenging due to the need for high expertise, large data volumes, and other complexities. Accordingly, the development of an automated system to indicate ground displacements directly from the wrapped interferograms and coherence maps could be highly advantageous. Here, we compare different machine learning algorithms to evaluate the feasibility of achieving this objective. The inputs for the implemented machine learning models were pixels selected from the filtered-wrapped interferograms of Sentinel-1, using a coherence threshold. The outputs were the same pixels labeled as fast positive, positive, fast negative, negative, and undefined movements. These labels were assigned based on the velocity values of the measurement points located within the pixels. We used the Parallel Small Baseline Subset service of the European Space Agency's GeoHazards Exploitation Platform to create the necessary interferograms, coherence, and deformation velocity maps. Subsequently, we applied a high-pass filter to the wrapped interferograms to separate the displacement signal from the atmospheric errors. We successfully identified the patterns associated with slow and fast movements by discerning the unique distributions within the matrices representing each movement class. The experiments included three case studies (from Italy, Portugal, and the United States), noted for their high sensitivity to landslides. We found that the Cosine K-nearest neighbor model achieved the best test accuracy. It is important to note that the test sets were not merely hidden parts of the training set within the same region but also included adjacent areas. We further improved the performance with pseudo-labeling, an approach aimed at evaluating the generalizability and robustness of the trained model beyond its immediate training environment. The lowest test accuracy achieved by the implemented algorithm was 80.1%. Furthermore, we used ArcGIS Pro 3.3 to compare the ground truth with the predictions to visualize the results better. The comparison aimed to explore indications of displacements affecting the main roads in the studied area.

8.
J Hazard Mater ; 471: 134302, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640664

RESUMEN

Antimony (Sb) and arsenic (As) lead to soil pollution and structural degradation at Sb smelting sites. However, most sites focus solely on Sb/As immobilization, neglecting the restoration of soil functionality. Here, we investigated the effectiveness of Fe/H2O2 modified biochar (Fe@H2O2-BC) and Sb-oxidizing bacteria (Bacillus sp. S3) in immobilizing Sb/As and enhancing soil functional resilience at an Sb smelting site. Over a twelve-month period, the leaching toxicity of As and Sb was reduced to 0.05 and 0.005 mg L-1 (GB3838-2002) respectively, with 1% (w/w) Fe@H2O2-BC and 2% (v/v) Bacillus sp. S3 solution. Compared to CK, the combination of Fe@H2O2-BC and Bacillus sp. S3 significantly reduced the bioavailable As/Sb by 98.00%/93.52%, whilst increasing residual As and reducible Sb fractions by 210.31% and 96.51%, respectively. The combined application generally improved soil aggregate structure, pore characteristics, and water-holding capacity. Fe@H2O2-BC served as a pH buffer and long-term reservoir of organic carbon, changing the availability of carbon substrates to bacteria. The inoculation of Bacillus sp. S3 facilitated the transformation of Sb(III)/As(III) to Sb(V)/As(V) and differentiated the composition and functional roles of bacterial communities in soils. The combination increased the abundance of soil saprotrophs by 164.20%, whilst improving the relative abundance of N- and S-cycling bacteria according to FUNGuild and FAPROTAX analysis. These results revealed that the integrated application was instrumental in As/Sb detoxification/immobilization and soil function restoration, which demonstrating a promising microbially-driven ecological restoration strategy at Sb smelting sites.


Asunto(s)
Antimonio , Arsénico , Bacillus , Carbón Orgánico , Peróxido de Hidrógeno , Microbiología del Suelo , Contaminantes del Suelo , Antimonio/química , Carbón Orgánico/química , Arsénico/metabolismo , Arsénico/química , Contaminantes del Suelo/metabolismo , Bacillus/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Restauración y Remediación Ambiental/métodos , Oxidación-Reducción , Suelo/química , Hierro/química , Hierro/metabolismo , Biodegradación Ambiental
9.
Environ Monit Assess ; 196(4): 359, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470540

RESUMEN

Monitoring ground deformation in industrial parks is of great importance for the economic development of urban areas. However, limited research has been conducted on the deformation mechanism in industrial parks, and there is a lack of integrated monitoring and prediction models. Therefore, this study proposes a comprehensive monitoring and prediction model for industrial parks, utilizing time-series Interferometry Synthetic Aperture Radar (InSAR) technology and the Whale Optimization Algorithm-Back Propagation (WOA-BP) neural network algorithm. Taking Yinxi Industrial Park in Baiyin District as a case study, we used 68 scenes of Sentinel-1A ascending and descending orbit data from June 2018 to April 2021. The Stanford Method for Persistent Scatterers-Permanent Scatterers (StaMPS-PS) and the Small Baseline Subsets-Interferometry Synthetic Aperture Radar (SBAS-InSAR) technologies were employed to obtain the surface deformation information of the park. The deformation information obtained by the two technologies was cross-validated in terms of temporal and spatial distribution, and the vertical and east-west deformation of the park was obtained by combining the ascending and descending orbit data. The results show that the deformation feature points in the line of sight (LOS) direction obtained by the two technologies have a high consistency in spatial distribution, using the ascending orbit data as an example. Additionally, the SBAS-InSAR technology was used to obtain the east-west and vertical deformation results of the park after merging the ascending and descending orbit data for the same period. It was found that the park is mainly affected by vertical deformation, with a maximum subsidence rate of 14.67 mm/yr. The subsidence areas correspond to the deformation positions observed in field survey photos. Based on the ascending orbit deformation data, the two technologies were validated with 585 points of the same latitude and longitude, and the coefficient of determination R2 was found to be 0.82, with a root mean square error (RMSE) of 2.20 mm/a. The deformation rates were also highly consistent. Due to the 47% increase in the number of sampling points provided by the StaMPS-PS technique compared to the SBAS-InSAR technique, the former was found to be more applicable in the industrial park. Based on the ground deformation mechanism in the park, we combined the StaMPS-PS technique with the WOA-BP neural network to construct a deformation zone prediction model. We conducted predictive studies on the deformation zones of buildings and roads within the park, and the results showed that the WOA-optimized BP neural network achieved higher accuracy and lower overall error compared to the unoptimized network. Finally, we analyzed and discussed the geological conditions and inducing factors of ground deformation in the park, providing a reference for a better understanding of the deformation mechanism and early warning of disasters in the industrial park.


Asunto(s)
Monitoreo del Ambiente , Radar , Animales , Factores de Tiempo , Cetáceos , Interferometría , Tecnología
10.
Sensors (Basel) ; 24(2)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38257454

RESUMEN

SBAS is mainly used in civil aviation and navigation, and will be applied to autonomous driving in the future. Given the open signal format of the Satellite Based Augmentation System (SBAS), which exposes security threats such as spoofing attacks, the utilization of SBAS navigation message authentication technology can improve the SBAS anti-spoofing ability from the system side. SBAS message authentication technology has become the future direction of SBAS system development. However, during the initial design of SBAS on L1, message authentication technology was not considered, and the addition of authentication messages will lead to further strain on existing message bandwidth resources. Therefore, in response to the issue of insufficient bandwidth resources after adding authentication messages to SBAS L1, a study on message scheduler for SBAS L1 authentication was conducted. A fixed time sequence dynamic message scheduler for incorporating authentication messages was proposed. This scheduler reduces the frequency of broadcasting clock error parameters to mitigate the impact of adding authentication messages. Furthermore, an optimized fixed time sequence dynamic message scheduler based on SBAS clock error messages was introduced. The results show that the message scheduler can not only improve the flexibility of SBAS message broadcasting, but also shorten the update interval of various types of messages under the premise of meeting the maximum update interval requirement. With minimal impact on the maximum message update interval, it improves the integrity, authenticity, and availability of messages. This approach can increase the effective message ratio in SBAS to over 91%, and the optimal solution reduces the initial user positioning time to 26 s.

11.
PeerJ Comput Sci ; 10: e1800, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38259899

RESUMEN

Since the first receiver independent exchange format (RINEX) version was released in 1989, it has gone through several versions, making the existing software, such as TEQC, incompatible with certain later versions. This study proposes a new Python package named PyRINEX, which is developed to batch process the most generally used versions of RINEX files, namely 2.0 and 3.0. The proposed package can be used to manage and edit numerous RINEX files as well as perform a data quality check function. PyRINEX can be easily imported into any Python IDE similar to any other open-source Python package, it also makes secondary development easy for users.

12.
Environ Sci Pollut Res Int ; 31(4): 6492-6510, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38151559

RESUMEN

The Lancang River flows through the alpine canyon region of southwest China, an area that has experienced frequent geological disasters over the years. Early monitoring of geological hazards is essential for disaster prevention and mitigation. However, traditional ground monitoring techniques are limited by the complex terrain conditions in high-altitude valley regions. In contrast, interferometric synthetic aperture radar (InSAR) technology can provide a high-precision, wide-range monitoring of slow rock-slope deformation, making it an effective tool for studying geological hazards. Within the study area, multiple synthetic aperture radar (SAR) images from the Sentinel-1A satellite were collected, and surface deformation was obtained using the small baseline subset InSAR (SBAS-InSAR). The results demonstrate that combining ascending and descending orbit images can be successfully applied to landslide monitoring in complex mountainous areas. Over 30 potential landslides were identified by combining InSAR results with optical images. The Line-Of-Sight (LOS) direction deformation features and their relationship with precipitation were analyzed based on two typical landslides, and two-dimensional/three-dimensional (2D/3D) deformation decomposition was carried out to reveal its motion characteristics. It was found that the cumulative deformation fluctuation amplitude was higher during the rainy season, and the main movement direction of the landslide was east-west. In addition, based on the spatial distribution and statistical analysis of deformation points along with meteorological data, geological elements, human activities, and topographic conditions, it is inferred that factors such as low vegetation coverage, tectonic movements, human activities, and high-altitude glacier thawing may contribute to the occurrence of disasters. And it was found that areas with high vegetation cover, high rainfall, and snow cover exhibit lower coherence coefficients. This study offers valuable insights for investigating large-scale geological in alpine canyon regions.


Asunto(s)
Desastres , Deslizamientos de Tierra , Humanos , Radar , Lluvia , Tecnología
13.
Sci Total Environ ; 912: 169210, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38097070

RESUMEN

Constructing hydraulic engineering ensures agricultural development and improves salinization environments. However, in seasonally frozen salinization regions, hydraulic engineering is prone to deformation failure. Leakage from canal raises the regional groundwater level, triggering secondary salinization environmental issues. Exploring the instability mechanisms is thus necessary for hydraulic engineering. Traditional deformation monitoring techniques and soil experiments are constrained by observation scale and timeliness. In this study, Sentinel-1B data from November 2017 to August 2019 were acquired. The small baseline subset (SBAS) InSAR approach was employed to interpret the seasonal deformation characteristics in both the vertical and slope directions of a damaged canal segment in Songyuan, Northeast China. The mechanical properties of saline-alkali soil under varying water contents were quantified by integrating unconfined compression experiment (UCE). In May, as the soil thawed downward, a frozen lenses with poor permeability formed at a depth of approximately 100 cm, causing the accumulation of meltwater and infiltrated precipitation between the frozen layer and the melting layer in the canal. The soil water content at a depth of 80 to 140 cm exceeded 22 %, reaching a threshold for rapid reduction in unconfined compression strength (UCS). Consequently, in spring, the low soil strength between the frozen layer and the melting layer resulted in interface sliding, with a displacement of -133.88 mm in the canal slope direction. Furthermore, the differential projection of freeze-thaw deformation in the slope direction caused continuous creep of the canal towards the free face, with a value of -23.27 mm, exacerbating the formation of the late spring landslide. Integrating InSAR and engineering geological analysis is beneficial for addressing deformation issues in hydraulic engineering. Ensuring the sustainable operation of hydraulic engineering holds important implications for mitigating the salinization process.

14.
Sensors (Basel) ; 23(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139553

RESUMEN

The No.4 tailings pond of the Dexing Copper Mine is the second largest in Asia. The tailing pond is a dangerous source of man-made debris flow with high potential energy. In view of the lack of effective and low-cost global safety monitoring means in this region, in this paper, the time-series InSAR technology is innovatively introduced to monitor the deformation of tailings dam and significant key findings are obtained. First, the surface deformation information of the tailings pond and its surrounding areas was extracted by using SBAS-InSAR technology and Sentinel-1A data. Second, the cause of deformation is explored by analyzing the deformation rate, deformation accumulation, and three typical deformation rate profiles of the representative observation points on the dam body. Finally, the power function model is used to predict the typical deformation observation points. The results of this paper indicated that: (1) the surface deformation of the tailings dam can be categorized into two directions: the upper portion of the dam moving away from the satellite along the Line of Sight (LOS) at a rate of -40 mm/yr, whereas the bottom portion approaching the satellite along the LOS at a rate of 8 mm/yr; (2) the deformation of the dam body is mainly affected by the inventory deposits and the construction materials of the dam body; (3) according to the current trend, deformation of two typical observation points in the LOS direction will reach the cumulative deformation of 80 mm and -360 mm respectively. The research results can provide data support for safety management of No.4 tailings dam in the Dexing Copper Mine, and provide a method reference for monitoring other similar tailings dams.

15.
Environ Monit Assess ; 195(12): 1493, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980287

RESUMEN

SBAS InSAR has long been used to monitor the mining surface deformation, and its research has been of great interest to researchers worldwide. For the unsatisfactory accuracy of SBAS InSAR-monitored mining surface deformation results, a new corrected model is proposed by integrating SBAS InSAR and Logistic Function. Firstly, the time series deformation results of the mining area were obtained by SBAS InSAR, and the variation law of the differences between SBAS InSAR- and leveling-monitored deformation values was statistically analyzed. Subsequently, the corrected model was constructed using the logistic linear regression analysis function and solved using the Levenberg-Marquardt algorithm. Finally, the corrected high-precision time series deformation results in the mining area were obtained. A mining area in Shandong Province of China was taken as the research object, and the practical application effect of the proposed corrected model was verified. Results showed that the Logistic Function could describe the variation law of the differences relatively accurately, and the corrected results were significantly better than the SBAS InSAR-monitored results, and the RMSEs of the corrected results were improved by 33-58%. The accuracy of SBAS InSAR-monitored mining surface deformation was effectively improved.


Asunto(s)
Algoritmos , Monitoreo del Ambiente , China , Factores de Tiempo
16.
J Hazard Mater ; 456: 131681, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245371

RESUMEN

Heavy metals (HMs) contamination poses a serious threat to soil health. However, the rhizosphere effect of native pioneer plants on the soil ecosystem remains unclear. Herein, how the rhizosphere (Rumex acetosa L.) influenced the process of HMs threatening soil micro-ecology was investigated by coupling various fractions of HMs, soil microorganisms and soil metabolism. The rhizosphere effect alleviated the HMs' stress by absorbing and reducing HMs' direct bioavailability, and the accumulation of ammonium nitrogen increased in the rhizosphere soil. Meanwhile, severe HMs contamination covered the rhizosphere effect on the richness, diversity, structure and predicted function pathways of soil bacterial community, but the relative abundance of Gemmatimonadota decreased and Verrucomicrobiota increased. The content of total HMs and physicochemical properties played a more important role than rhizosphere effect in shaping soil bacterial community. Furthermore, As was observed to have a more significant impact compared to Sb. Moreover, plant roots improved the stability of bacterial co-occurrence network, and significantly changed the critical genera. The process influenced bacterial life activity and nutrient cycling in soil, and the conclusion was further supported by the significant difference in metabolic profiles. This study illustrated that in Sb/As co-contaminated area, rhizosphere effect significantly changed soil HMs content and fraction, soil properties, and microbial community and metabolic profiles.


Asunto(s)
Metales Pesados , Microbiota , Rumex , Contaminantes del Suelo , Suelo/química , Rumex/metabolismo , Metales Pesados/análisis , Bacterias/metabolismo , Plantas/metabolismo , Metaboloma , Microbiología del Suelo , Contaminantes del Suelo/metabolismo
17.
Sensors (Basel) ; 23(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37050447

RESUMEN

The Dadu River travels in the mountainous areas of southwestern China, one of regions with the most hazards that has long suffered from frequent geohazards. The early identification of landslides in this region is urgently needed, especially after the recent Luding earthquake (MS 6.8). While conventional ground-based monitoring techniques are limited by the complex terrain conditions in these alpine valley regions, space interferometric synthetic aperture radar (InSAR) provides an incomparable advantage in obtaining surface deformation with high precision and over a wide area, which is very useful for long-term and slow geohazard monitoring. In this study, more than 500 Sentinel-1 SAR images with four frames acquired during 2017~2022 were collected to detect the hidden landslide regions from the Jinchuan to Ebian Section along the Dadu River, based on joint-scatterer InSAR (JS-InSAR) and small baseline subset (SBAS) techniques. The results showed that our method could be successfully applied for landslide monitoring in complex mountainous regions. Furthermore, 143 potential landslide regions spreading over an 800 km area along the Dadu River were extracted by integrating the deformation measurements and optical images. Our study can provide a reference for large-scale geological hazard surveys in mountainous areas, and the InSAR technique will be encouraged for the local government in future long-term monitoring applications in the Dadu River Basin.

18.
Sci Total Environ ; 880: 163262, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023808

RESUMEN

The current highest glacial lake outburst floods (GLOFs) risk level is centered in the eastern Himalaya. GLOFs represent a serious threat to downstream inhabitants and ecological environment. In the context of climate warming on the Tibetan Plateau, such GLOFs will continue or even intensify in the future. Remote sensing and statistical methods are often used to diagnose glacial lakes with the highest outburst probability. These methods are efficient in large-scale glacial lake risk assessment but do not take into consideration the complexity of specific glacial lake dynamics and triggering factor uncertainty. Therefore, we explored a novel approach to integrate geophysics, remote sensing, and numerical simulation in glacial lake and GLOF disaster chain assessments. In particular, geophysical techniques are rarely applied to the exploration of glacial lakes. The Namulacuo Lake located in the southeastern Tibetan Plateau is considered as the experimental site. The current status of the lake, including landform construction and identifying potential triggering factors, was first investigated. Secondly, the outburst process and disaster chain effect were evaluated by numerical simulation based on the multi-phase modeling frame proposed by Pudasaini and Mergili (2019) implemented in the open source computational tool r.avaflow. The results allowed verifying that the Namulacuo Lake dam was a landslide dam with an obvious layered structure. Also, the piping-induced flood might have more severe consequences than the short-term ultra-high discharge flood caused by surge. The blocking event caused by a surge disappeared faster than that caused by piping. Therefore, this comprehensive diagnostic approach can assist GLOF researchers to increase their understanding of key challenges they are facing regarding GLOF mechanisms.

19.
Sensors (Basel) ; 23(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36772150

RESUMEN

Unmanned aerial vehicles (UAVs) have become very popular tools for geoinformation acquisition in recent years. They have also been applied in many other areas of life. Their navigation is highly dependent on global navigation satellite systems (GNSS). The European Geostationary Navigation Overlay Service (EGNOS) is intended to support GNSSs during positioning, mainly for aeronautical applications. The research presented in this paper concerns the analysis of the positioning quality of a modified GPS/EGNOS algorithm. The calculations focus on the source of ionospheric delay data as well as on the aspect of smoothing code observations with phase measurements. The modifications to the algorithm concerned the application of different ionospheric models for position calculation. Consideration was given to the EGNOS ionospheric model, the Klobuchar model applied to the GPS system, the Klobuchar model applied to the BeiDou system, and the NeQuick model applied to the Galileo system. The effect of removing ionospherical corrections from GPS/EGNOS positioning on the results of the determination of positioning quality was also analysed. The results showed that the original EGNOS ionospheric model maintains the best accuracy results and a better correlation between horizontal and vertical results than the other models examined. The additional use of phase-smoothing of code observations resulted in maximum horizontal errors of approximately 1.3 m and vertical errors of approximately 2.2 m. It should be noted that the results obtained have local characteristics related to the area of north-eastern Poland.

20.
Environ Sci Pollut Res Int ; 30(13): 39093-39106, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36595168

RESUMEN

A World Natural Heritage Site, Jiuzhaigou, is the first nature reserve in China whose primary purpose is to protect natural scenery. On August 8, 2017, a Ms 7.0 earthquake caused many unstable slopes in Jiuzhaigou, Sichuan Province, China. In the extreme storm conditions that follow, the unstable slopes tend to develop into potential landslides, which can cause many casualties and property losses in scenic areas. Sentinel-1A ascending orbit data were obtained in this paper to establish a SAR database. The large-scale deformation rate map of the study area was obtained using a small baseline set InSAR technology. The potential landslides in the deformation area are preliminarily confirmed with remote sensing interpretation. The field verification is further carried out by studying the deformation information of the characteristic points on the potential landslides. The results show that 13 deformation zones were preliminarily identified, and three typical deformation zones were selected for coupling verification and identified as potential landslides. At the same time, further analysis shows that the four potential landslides have been in continuous linear deformation for a long time since the earthquake, posing a severe threat to the safety of local people's lives and property. The research results provide a reference for the early identification and warning of potential landslides in earthquake-prone regions.


Asunto(s)
Terremotos , Deslizamientos de Tierra , Humanos , Bases de Datos Factuales , China , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA