Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.538
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124937, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39137709

RESUMEN

In this study, the interaction of the human hemoglobin with cost effective and chemically fabricated CdS quantum dots (QDs) (average sizes ≈3nm) has been investigated. The semiconductor QDs showed maximum visible absorption at 445 nm with excitonic formation and band gap of ≈ 2.88 eV along with hexagonal crystalline phase. The binding of QDs-Hb occurs through corona formation to the ground sate complex formation. The life time of the heme pocket binding and reorganization were found to be t1 = 43 min and t2 = 642 min, respectively. The emission quenching of the Hb has been indicated large energy transfer between CdS QDs and Hb with tertiary deformation of Hb. The binding thermodynamics showed highly exothermic nature. The ultrafast decay during corona formation was studied from TCSPC. The results showed that the energy transfer efficiency increases with the increase of the QDs concentration and maximum ≈71.5 % energy transfer occurs and average ultrafast lifetime varies from 5.45 ns to1.51 ns. The deformation and unfolding of the secondary structure of Hb with changes of the α-helix (≈74 % to ≈51.07 %) and ß-sheets (≈8.63 % to ≈10.25 %) have been observed from circular dichroism spectrum. The SAXS spectrum showed that the radius of gyration of CdS QDs-Hb bioconjugate increased (up to 23 ± 0.45 nm) with the increase of the concentration of QDs compare with pure Hb (11 ± 0.23 nm) and Hb becoming more unfolded.


Asunto(s)
Compuestos de Cadmio , Transferencia de Energía , Hemoglobinas , Desplegamiento Proteico , Puntos Cuánticos , Sulfuros , Puntos Cuánticos/química , Humanos , Compuestos de Cadmio/química , Sulfuros/química , Sulfuros/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Unión Proteica , Termodinámica , Espectrometría de Fluorescencia , Dicroismo Circular
2.
J Biol Chem ; : 107770, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270823

RESUMEN

Dynamic ADP-ribosylation signalling is a crucial pathway that controls fundamental cellular processes, in particular, the response to cellular stresses such as DNA damage, reactive oxygen species and infection. In some pathogenic microbes the response to oxidative stress is controlled by a SirTM/zinc-containing macrodomain (Zn-Macro) pair responsible for establishment and removal of the modification, respectively. Targeting this defence mechanism against the host's innate immune response may lead to novel approaches to support the fight against emerging antimicrobial resistance. Earlier studies suggested that Zn-Macros play a key role in the activation of this defence. Therefore, we used phylogenetic, biochemical, and structural approaches to elucidate the functional properties of these enzymes. Using the substrate mimetic asparagine-ADP-ribose as well as the ADP-ribose product, we characterise the catalytic role of the zinc ion in the removal of the ADP-ribosyl modification. Furthermore, we determined structural properties that contribute to substrate selectivity within the different Zn-Macro branches. Together, our data not only give new insights into the Zn-Macro family but also highlight their distinct features that may be exploited for the development of future therapies.

3.
J Appl Crystallogr ; 57(Pt 4): 986-1000, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39108827

RESUMEN

Small-angle X-ray tensor tomography and the related wide-angle X-ray tensor tomography are X-ray imaging techniques that tomographically reconstruct the anisotropic scattering density of extended samples. In previous studies, these methods have been used to image samples where the scattering density depends slowly on the direction of scattering, typically modeling the directionality, i.e. the texture, with a spherical harmonics expansion up until order ℓ = 8 or lower. This study investigates the performance of several established algorithms from small-angle X-ray tensor tomography on samples with a faster variation as a function of scattering direction and compares their expected and achieved performance. The various algorithms are tested using wide-angle scattering data from an as-drawn steel wire with known texture to establish the viability of the tensor tomography approach for such samples and to compare the performance of existing algorithms.

4.
Biochem J ; 481(16): 1075-1096, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39105673

RESUMEN

Toxoplasma gondii is a widely distributed apicomplexan parasite causing toxoplasmosis, a critical health issue for immunocompromised individuals and for congenitally infected foetuses. Current treatment options are limited in number and associated with severe side effects. Thus, novel anti-toxoplasma agents need to be identified and developed. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) is considered the rate-limiting enzyme in the non-mevalonate pathway for the biosynthesis of the isoprenoid precursors isopentenyl pyrophosphate and dimethylallyl pyrophosphate in the parasite, and has been previously investigated for its key role as a novel drug target in some species, encompassing Plasmodia, Mycobacteria and Escherichia coli. In this study, we present the first crystal structure of T. gondii DXR (TgDXR) in a tertiary complex with the inhibitor fosmidomycin and the cofactor NADPH in dimeric conformation at 2.5 Šresolution revealing the inhibitor binding mode. In addition, we biologically characterize reverse α-phenyl-ß-thia and ß-oxa fosmidomycin analogues and show that some derivatives are strong inhibitors of TgDXR which also, in contrast with fosmidomycin, inhibit the growth of T. gondii in vitro. Here, ((3,4-dichlorophenyl)((2-(hydroxy(methyl)amino)-2-oxoethyl)thio)methyl)phosphonic acid was identified as the most potent anti T. gondii compound. These findings will enable the future design and development of more potent anti-toxoplasma DXR inhibitors.


Asunto(s)
Isomerasas Aldosa-Cetosa , Fosfomicina , Complejos Multienzimáticos , Toxoplasma , Toxoplasma/enzimología , Toxoplasma/efectos de los fármacos , Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Isomerasas Aldosa-Cetosa/química , Isomerasas Aldosa-Cetosa/metabolismo , Isomerasas Aldosa-Cetosa/genética , Fosfomicina/farmacología , Fosfomicina/análogos & derivados , Fosfomicina/química , Cristalografía por Rayos X , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , NADP/metabolismo , NADP/química , Humanos , Modelos Moleculares , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/química , Oxidorreductasas/metabolismo
5.
Front Chem ; 12: 1379914, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170866

RESUMEN

The rise of antibiotic-resistant bacterial strains has become a critical health concern. According to the World Health Organization, the market introduction of new antibiotics is alarmingly sparse, underscoring the need for novel therapeutic targets. The LytR-CpsA-Psr (LCP) family of proteins, which facilitate the insertion of cell wall glycopolymers (CWGPs) like teichoic acids into peptidoglycan, has emerged as a promising target for antibiotic development. LCP proteins are crucial in bacterial adhesion and biofilm formation, making them attractive for disrupting these processes. This study investigated the structural and functional characteristics of the LCP domain of LytR from Streptococcus dysgalactiae subsp. dysgalactiae. The protein structure was solved by X-ray Crystallography at 2.80 Å resolution. Small-angle X-ray scattering (SAXS) data were collected to examine potential conformational differences between the free and ligand-bound forms of the LytR LCP domain. Additionally, docking and molecular dynamics (MD) simulations were used to predict the interactions and conversion of ATP to ADP and AMP. Experimental validation of these predictions was performed using malachite green activity assays. The determined structure of the LCP domain revealed a fold highly similar to those of homologous proteins while SAXS data indicated potential conformational differences between the ligand-free and ligand-bound forms, suggesting a more compact conformation during catalysis, upon ligand binding. Docking and MD simulations predicted that the LytR LCP domain could interact with ADP and ATP and catalyze their conversion to AMP. These predictions were experimentally validated by malachite green activity assays, confirming the protein's functional versatility. The study provides significant insights into the structural features and functional capabilities of the LCP domain of LytR from S. dysgalactiae subsp. dysgalactiae. These findings pave the way for designing targeted therapies against antibiotic-resistant bacteria and offer strategies to disrupt bacterial biofilm formation.

6.
Structure ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106858

RESUMEN

Enzymes facilitating the transfer of phosphate groups constitute the most extensive protein families across all kingdoms of life. They make up approximately 10% of the proteins found in the human genome. Understanding the mechanisms by which enzymes catalyze these reactions is essential in characterizing the processes they regulate. Metal fluorides can be used as multifunctional tools to study these enzymes. These ionic species bear the same charge as phosphate and the transferring phosphoryl group and, in addition, allow the enzyme to be trapped in catalytically important states with spectroscopically sensitive atoms interacting directly with active site residues. The ionic nature of these phosphate surrogates also allows their removal and replacement with other analogs. Here, we describe the best practices to obtain these complexes, their use in NMR, X-ray crystallography, cryo-EM, and SAXS and describe a new metal fluoride, scandium tetrafluoride, which has significant anomalous signal using soft X-rays.

7.
J Colloid Interface Sci ; 677(Pt A): 781-789, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39121662

RESUMEN

HYPOTHESIS: Multi-walled tubular aggregates formed by hierarchical self-assembly of beta-cyclodextrin (ß-CD) and sodium dodecylsulfate (SDS) hold a great potential as microcarriers. However, the underlying mechanism for this self-assembly is not well understood. To advance the application of these structures, it is essential to fine-tune the cavity size and comprehensively elucidate the energetic balance driving their formation: the bending modulus versus the microscopic line tension. EXPERIMENTS: We investigated temperature-induced changes in the hierarchical tubular aggregates using synchrotron small-angle X-ray scattering across a broad concentration range. Detailed analysis of the scattering patterns enabled us to determine the structural parameters of the microtubes and to construct a phase diagram of the system. FINDINGS: The microtubes grow from the outside in and melt from the inside out. We relate derived structural parameters to enthalpic changes driving the self-assembly process on the molecular level in terms of their bending modulus and microscopic line tension. We find that the conformation of the crystalline bilayer affects the saturation concentration, providing an example of a phenomenon we call conformational freezing point depression. Inspired by the colligative phenomenon of freezing point depression, well known from undergraduate physics, we model this system by including the membrane conformation, which can describe the energetics of this hierarchical system and give access to microscopic properties without free parameters.

8.
Biochem Biophys Res Commun ; 737: 150513, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39126860

RESUMEN

Cryptochrome (Cry) in some species could act as a quantum senser to detect the inclination angle of geomagnetic field, the function of which attributes the magnetic sensitivity of spins of unpaired electrons in radical pair (RP) in CRY generated by blue light irradiation. However, the effect of blue light on the structure and molecular behavior of Cry has not been well investigated. We conducted the size exclusion chromatography (SEC) and small-angle X-ray scattering (SAXS) analyses to inspect the molecular structure and behavior of cryptochrome 4a (ErCry4a) from European robin, a representative magnetosensory animal. The results indicated that ErCry4a could form flat-shape oligomers. Moreover, blue light irradiation induced the contraction of the ErCry4a molecule at the monomer scale and simultaneously accelerated the two-dimensional oligomerization of ErCry4a. This oligomerization may enhance the regularity of the two-dimensional arrangement of ErCry4a molecules, providing a positive effect for detecting the inclination angle.

9.
Dokl Biol Sci ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128960

RESUMEN

The transcription factor Z4 (putzig) is one of the key proteins that determine the chromatin structure in Drosophila. Z4 is found at the boundaries of bands on polytene chromosomes, and the bands are currently thought to correlate with chromatin domains. Z4 is a component of a protein complex that additionally includes Chromator and BEAF-32, and a conserved domain is necessary to occur at the N end of Z4 to ensure its interaction with the two proteins. In this study, a zinc finger-associated domain (ZAD) domain was identified in Z4. The capability of dimerization was confirmed for the domain by biochemical methods. A dimer model of the domain was obtained using AlphaFold2, and the model structure was confirmed using small-angle X-ray scattering (SAXS). The dimer structure shows a fold typical of ZAD domains.

10.
Protein Sci ; 33(9): e5145, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39150070

RESUMEN

The red macroalgae Porphyra, commonly known as Nori, is widely used as food around the world due to its high nutrient content, including the significant abundance of colored phycobiliproteins (PBPs). Among these, R-phycocyanin (R-PC) stands out for its vibrant purple color and numerous bioactive properties, making it a valuable protein for the food industry. However, R-PC's limited thermal stability necessitates alternative processing methods to preserve its color and bioactive properties. Our study aimed to investigate the in-situ stability of oligomeric R-PC under high pressure (HP) conditions (up to 4000 bar) using a combination of absorption, fluorescence, and small-angle X-ray scattering (SAXS) techniques. The unfolding of R-PC is a multiphase process. Initially, low pressure induces conformational changes in the R-PC oligomeric form (trimers). As pressure increases above 1600 bar, these trimers dissociate into monomers, and at pressures above 3000 bar, the subunits begin to unfold. When returned to atmospheric pressure, R-PC partially refolds, retaining 50% of its original color absorbance. In contrast, heat treatment causes irreversible and detrimental effects on R-PC color, highlighting the advantages of HP treatment in preserving both the color and bioactive properties of R-PC compared to heat treatment.


Asunto(s)
Ficocianina , Presión , Estabilidad Proteica , Ficocianina/química , Dispersión del Ángulo Pequeño , Porphyra/química , Difracción de Rayos X , Conformación Proteica
11.
J Colloid Interface Sci ; 677(Pt B): 387-395, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39153242

RESUMEN

HYPOTHESIS: Nano-scale dynamics of self-assembled therapeutics play a large role in their biological function. However, assessment of such dynamics remains absent from conventional pharmaceutical characterization. We hypothesize that time-resolved small-angle neutron scattering (TR-SANS) can reveal their kinetic properties. For lipid nanoparticles (LNP), limited molecular motion is important for avoiding degradation prior to entering cells while, intracellularly, enhanced molecular motion is then vital for effective endosomal escape. We propose TR-SANS for quantifying molecular exchange in LNPs and, therefore, enabling optimization of opposing molecular behaviors of a pharmaceutical in two distinct environments. EXPERIMENTS: We use TR-SANS in combination with traditional SANS and small-angle x-ray scattering (SAXS) to experimentally quantify nano-scale dynamics and provided unprecedented insight to molecular behavior of LNPs. FINDINGS: LNPs have molecular exchange dynamics relevant to storage and delivery which can be captured using TR-SANS. Cholesterol exchanges on the time-scale of hours even at neutral pH. As pH drops below the effective pKa of the ionizable lipid, molecular exchange occurs faster. The results give insight into behavior enabling delivery and provide a quantifiable metric by which to compare formulations. Successful analysis of this multi-component system also expands the opportunities for using TR-SANS to characterize complex therapeutics.

12.
Heliyon ; 10(14): e34554, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149035

RESUMEN

Periodontal disease is triggered by surface bacterial biofilms where bacteria are less susceptible to antibiotic treatment. The development of liposome-based delivery mechanisms for the therapeutic use of antimicrobial peptides is an attractive alternative in this regard. The cationic antimicrobial peptide LL-37 (human cathelicidin) is well-known to exert antibacterial activity against P orphyromonas gingivalis, a keystone oral pathogen. However, the antibacterial activity of the 16-amino acid fragment (LL17-32) of LL-37, is unknown. In addition, there are still gaps in studies using liposomal formulations as delivery vehicles of antibacterial peptides against this pathogen. This study was designed to examine the influence of the different types of liposomal formulations to associate and deliver LL17-32 to act against P. gingivalis. Chitosans of varying Mw and degree of acetylation (DA) were adsorbed at the surface of soya lecithin (SL) liposomes. Their bulk (average hydrodynamic size, ζ-potential and membrane fluidity) and ultrastructural (d-spacing, half-bilayer thickness and the water layer thickness) biophysical properties were investigated by a panel of techniques (DLS, SAXS, M3-PALS, fluorescence spectroscopy and TEM imaging). Their association efficiency, in vitro release, stability, and efficacy in killing the periodontal pathogen P. gingivalis were also investigated. All liposomal systems possessed spherical morphologies and good shelf-life stabilities. Under physiological conditions, chitosan formulations with a high DA demonstrated enhanced stability in comparison to low DA-chitosan formulations. Chitosans and LL17-32 both decreased SL-liposomal membrane fluidity. LL17-32 exhibited a high degree of association with SL-liposomes without in vitro release. In biological studies, free LL17-32 or chitosans alone, demonstrated microbicidal activity against P. gingivalis, however this was attenuated when LL17-32 was loaded onto the SL-liposome delivery system, presumably due to the restrained release of the peptide. A property that could be harnessed in future studies (e.g., oral mucoadhesive slow-release formulations).

13.
R Soc Open Sci ; 11(6): 231804, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39100180

RESUMEN

Non-iridescent structural plumage reflectance is a sexually selected indicator of individual quality in several bird species. However, the structural basis of individual differences remains unclear. In particular, the dominant periodicity of the quasi-ordered feather barb nanostructure is of key importance in colour generation, but no study has successfully traced back reflectance parameters, and particularly hue, to nanostructural periodicity, although this would be key to deciphering the information content of individual variation. We used matrix small-angle X-ray scattering measurements of intact, stacked feather samples from the blue tit crown to estimate the sex-dependence and individual variation of nanostructure and its effects on light reflectance. Measures of nanostructural periodicity successfully predicted brightness, ultraviolet chroma and also hue, with statistically similar effects in the two sexes. However, we also observed a lack of overall effect of the nanostructural inhomogeneity estimate on reflectance chromaticity, sex-dependent accuracy in hue prediction and strong sex-dependence in position estimation error. We suggest that reflectance attributes are modified by other feather structures in a sex-specific manner, and that within-individual variation in nanostructural parameters exists within or among feathers and this confounds the interpretation of structure-reflectance relationships at the plumage area level.

14.
ACS Nano ; 18(36): 25325-25336, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39189351

RESUMEN

This study focuses on the design and characterization of binary nanoparticle superlattices: Two differently sized, supercharged protein nanocages are used to create a matrix for nanoparticle arrangement. We have previously established the assembly of protein nanocages of the same size. Here, we present another approach for multicomponent biohybrid material synthesis by successfully assembling two differently sized supercharged protein nanocages with different symmetries. Typically, the ordered assembly of objects with nonmatching symmetry is challenging, but our electrostatic-based approach overcomes the symmetry mismatch by exploiting electrostatic interactions between oppositely charged cages. Moreover, our study showcases the use of nanoparticles as a contrast enhancer in an elegant way to gain insights into the structural details of crystalline biohybrid materials. The assembled materials were characterized with various methods, including transmission electron microscopy (TEM) and single-crystal small-angle X-ray diffraction (SC-SAXD). We employed cryo-plasma-focused ion beam milling (cryo-PFIB) to prepare lamellae for the investigation of nanoparticle sublattices via electron cryo-tomography. Importantly, we refined superlattice structure data obtained from single-crystal SAXD experiments, providing conclusive evidence of the final assembly type. Our findings highlight the versatility of protein nanocages for creating distinctive types of binary superlattices. Because the nanoparticles do not influence the type of assembly, protein cage matrices can combine various nanoparticles in the solid state. This study not only contributes to the expanding repertoire of nanoparticle assembly methods but also demonstrates the power of advanced characterization techniques in elucidating the structural intricacies of these biohybrid materials.


Asunto(s)
Tamaño de la Partícula , Nanopartículas/química , Proteínas/química
15.
J Synchrotron Radiat ; 31(Pt 5): 1197-1208, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39182204

RESUMEN

An innovative dual-thickness semi-transparent beamstop designed to enhance the performance of small-angle X-ray scattering (SAXS) experiments is introduced. This design integrates two absorbers of differing thicknesses side by side into a single attenuator, known as a beamstop. Instead of completely stopping the direct beam, it attenuates it, allowing the SAXS detector to measure the transmitted beam through the sample. This approach achieves true synchronization in measuring both scattered and transmitted signals and effectively eliminates higher-order harmonic contributions when determining the transmission light intensity through the sample. This facilitates and optimizes signal detection and background subtraction. This contribution details the theoretical basis and practical implementation of this solution at the SAXS station on the 1W2A beamline at the Beijing Synchrotron Radiation Facility. It also anticipates its application at other SAXS stations, including that at the forthcoming High Energy Photon Source, providing an effective solution for high-precision SAXS experiments.

16.
Sensors (Basel) ; 24(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39205001

RESUMEN

Spectral small-angle X-ray scattering (sSAXS) is a powerful technique for material characterization from thicker samples by capturing elastic X-ray scattering data in angle- and energy-dispersive modes at small angles. This approach is enabled by the use of a 2D spectroscopic photon-counting detector that provides energy and position information of scattered photons when a sample is irradiated by a polychromatic X-ray beam. Here, we describe an open-source tool with a graphical interface for analyzing sSAXS data obtained from a 2D spectroscopic photon-counting detector with a large number of energy bins. The tool takes system geometry parameters and raw detector data to output 1D scattering patterns and a 2D spatially-resolved scattering map in the energy range of interest. We validated these features using data from samples of caffeine powder with well-known scattering peaks. This open-source tool will facilitate sSAXS data analysis for various material characterization applications.

17.
Chem Phys Lipids ; 263: 105419, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964567

RESUMEN

Tricyclic medicine such as amitriptyline (AMT) hydrochloride, initially developed to treat depression, is also used to treat neuropathic pain, anxiety disorder, and migraines. The mechanism of functioning of this type of drugs is ambiguous. Understanding the mechanism is important for designing new drug molecules with higher pharmacological efficiency. Hence, in the present study, biophysical approaches have been taken to shed light on their interactions with a model cellular membrane of brain sphingomyelin in the form of monolayer and multi-lamellar vesicles. The surface pressure-area isotherm infers the partitioning of a drug molecule into the lipid monolayer at the air water interface, providing a higher surface area per molecule and reducing the in-plane elasticity. Further, the surface electrostatic potential of the lipid monolayer is found to increase due to the insertion of drug molecule. The interfacial rheology revealed a reduction of the in-plane viscoelasticity of the lipid film, which, depends on the adsorption of the drug molecule onto the film. Small-angle X-ray scattering (SAXS) measurements on multilamellar vesicles (MLVs) have revealed that the AMT molecules partition into the hydrophobic core of the lipid membrane, modifying the organization of lipids in the membrane. The modified physical state of less rigid membrane and the transformed electrostatics of the membrane could influence its interaction with synaptic vesicles and neurotransmitters making higher availability of the neurotransmitters in the synaptic cleft.


Asunto(s)
Amitriptilina , Antidepresivos Tricíclicos , Esfingomielinas , Esfingomielinas/química , Antidepresivos Tricíclicos/química , Antidepresivos Tricíclicos/farmacología , Amitriptilina/química , Amitriptilina/metabolismo , Amitriptilina/farmacología , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Electricidad Estática
18.
ACS Biomater Sci Eng ; 10(8): 4802-4811, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39066733

RESUMEN

We introduce aqueous ionic liquid (IL) mixtures, specifically mixtures of 1-butyl-3-imidazoliumtetrafluoroborate (BMImBF4), with water as a minimal model of lipid bilayer membranes. Imidazolium-based ILs are known to form clustered nanoscale structures in which local inhomogeneities, micellar or lamellar structures, are formed to shield hydrophobic parts of the cation from the polar cosolvent (water). To investigate these nanostructures, dynamic light scattering (DLS) on samples with different mixing ratios of water and BMImBF4 was performed. At mixing ratios of 50% and 45% (v/v), small and homogeneous nanostructures can indeed be detected. To test whether, in particular, these stable nanostructures in aqueous mixtures may mimic the effects of phospholipid bilayer membranes, we further investigated their interaction with myelin basic protein (MBP), a peripheral, intrinsically disordered membrane protein of the myelin sheath. Using dynamic light scattering (DLS), continuous wave (CW) and pulse electron paramagnetic resonance (EPR), and small-angle X-ray scattering (SAXS) on recombinantly produced, "healthy" charge variants rmC1WT and double cysteine variant C1S17CH85C, we find that the size and the shape of the determined nanostructures in an optimum mixture offer model membranes in which the protein exhibits native behavior. SAXS measurements illuminate the size and shape of the nanostructures and indicate IL-rich "beads" clipped together by functional MBP, one of the in vivo roles of the protein in the myelin sheath. All the gathered data combined indicate that the 50% and 45% aqueous IL mixtures can be described as offering minimal models of a lipid mono- or bilayer that allow native processing and potential study of at least peripheral membrane proteins like MBP.


Asunto(s)
Líquidos Iónicos , Membrana Dobles de Lípidos , Agua , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Líquidos Iónicos/química , Agua/química , Dispersión del Ángulo Pequeño , Imidazoles/química , Difracción de Rayos X
19.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 8): 165-172, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38990054

RESUMEN

Preparation of biomacromolecules for structural biology studies is a complex and time-consuming process. The goal is to produce a highly concentrated, highly pure product that is often shipped to large facilities with tools to prepare the samples for crystallization trials or for measurements at synchrotrons and cryoEM centers. The aim of this article is to provide guidance and to discuss general considerations for shipping biomacromolecular samples. Details are also provided about shipping samples for specific experiment types, including solution- and cryogenic-based techniques. These guidelines are provided with the hope that the time and energy invested in sample preparation is not lost due to shipping logistics.


Asunto(s)
Manejo de Especímenes , Manejo de Especímenes/métodos , Manejo de Especímenes/normas , Cristalografía por Rayos X/métodos
20.
IUCrJ ; 11(Pt 5): 762-779, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38989800

RESUMEN

Stimulated by informal conversations at the XVII International Small Angle Scattering (SAS) conference (Traverse City, 2017), an international team of experts undertook a round-robin exercise to produce a large dataset from proteins under standard solution conditions. These data were used to generate consensus SAS profiles for xylose isomerase, urate oxidase, xylanase, lysozyme and ribonuclease A. Here, we apply a new protocol using maximum likelihood with a larger number of the contributed datasets to generate improved consensus profiles. We investigate the fits of these profiles to predicted profiles from atomic coordinates that incorporate different models to account for the contribution to the scattering of water molecules of hydration surrounding proteins in solution. Programs using an implicit, shell-type hydration layer generally optimize fits to experimental data with the aid of two parameters that adjust the volume of the bulk solvent excluded by the protein and the contrast of the hydration layer. For these models, we found the error-weighted residual differences between the model and the experiment generally reflected the subsidiary maxima and minima in the consensus profiles that are determined by the size of the protein plus the hydration layer. By comparison, all-atom solute and solvent molecular dynamics (MD) simulations are without the benefit of adjustable parameters and, nonetheless, they yielded at least equally good fits with residual differences that are less reflective of the structure in the consensus profile. Further, where MD simulations accounted for the precise solvent composition of the experiment, specifically the inclusion of ions, the modelled radius of gyration values were significantly closer to the experiment. The power of adjustable parameters to mask real differences between a model and the structure present in solution is demonstrated by the results for the conformationally dynamic ribonuclease A and calculations with pseudo-experimental data. This study shows that, while methods invoking an implicit hydration layer have the unequivocal advantage of speed, care is needed to understand the influence of the adjustable parameters. All-atom solute and solvent MD simulations are slower but are less susceptible to false positives, and can account for thermal fluctuations in atomic positions, and more accurately represent the water molecules of hydration that contribute to the scattering profile.


Asunto(s)
Benchmarking , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Difracción de Rayos X/métodos , Funciones de Verosimilitud , Proteínas/química , Ribonucleasa Pancreática/química , Muramidasa/química , Conformación Proteica , Urato Oxidasa/química , Urato Oxidasa/metabolismo , Isomerasas Aldosa-Cetosa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA