Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Control Release ; 241: 57-67, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27620073

RESUMEN

Parasite proteins exported to the surface of Plasmodium falciparum-parasitized red blood cells (pRBCs) have a major role in severe malaria clinical manifestation, where pRBC cytoadhesion and rosetting processes have been strongly linked with microvascular sequestration while avoiding both spleen filtration and immune surveillance. The parasite-derived and pRBC surface-exposed PfEMP1 protein has been identified as one of the responsible elements for rosetting and, therefore, considered as a promising vaccine candidate for the generation of rosette-disrupting antibodies against severe malaria. However, the potential role of anti-rosetting antibodies as targeting molecules for the functionalization of antimalarial drug-loaded nanovectors has never been studied. Our manuscript presents a proof-of-concept study where the activity of an immunoliposomal vehicle with a dual performance capable of specifically recognizing and disrupting rosettes while simultaneously eliminating those pRBCs forming them has been assayed in vitro. A polyclonal antibody against the NTS-DBL1α N-terminal domain of a rosetting PfEMP1 variant has been selected as targeting molecule and lumefantrine as the antimalarial payload. After 30min incubation with 2µM encapsulated drug, a 70% growth inhibition for all parasitic forms in culture (IC50: 414nM) and a reduction in ca. 60% of those pRBCs with a rosetting phenotype (IC50: 747nM) were achieved. This immunoliposomal approach represents an innovative combination therapy for the improvement of severe malaria therapeutics having a broader spectrum of activity than either anti-rosetting antibodies or free drugs on their own.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Antimaláricos/administración & dosificación , Eritrocitos/parasitología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/inmunología , Formación de Roseta , Antimaláricos/farmacología , Células Cultivadas , Humanos , Liposomas , Plasmodium falciparum/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA