Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Front Pharmacol ; 15: 1440515, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234102

RESUMEN

Background: Senescence-accelerated mouse prone 8 (SAMP8) and age-matched SAMR1 mice are used to study the pathogenesis and therapeutics of Alzheimer's disease (AD); however, the molecular mechanisms are not completely understood. Objective: This study aimed to examine the effects of the 5-month administration of formononetin in SAMP8 mice and used RNA-seq to explore the molecular targets. Methods: SAMP8 mice were orally administered formononetin (0, 8, and 16 mg/kg) from 4 months of age, and age-matched SAMR1 mice were used as controls. Behavioral tests were performed in 9-month-old mice, followed by histopathologic analysis. Total RNA from the hippocampus was isolated and subjected to RNA-seq, RT-qPCR, and bioinformatics analysis. Results: The 9-month-old SAMP8 mice exhibited cognition deficits, evidenced by novel object recognition, open-field test, elevated plus maze, and passive avoidance. Nissl bodies in the cortex and hippocampus were decreased. Formononetin treatments ameliorated behavioral deficits and improved morphological changes, which were evidenced by Nissl and H&E staining. RNA-seq revealed distinct gene expression patterns between SAMP8 and SAMR1 mice. Differentially expressed genes in SAMP8 mice were attenuated or normalized by formononetin. Ingenuity pathway analysis (IPA) of canonical pathway and upstream regulators revealed increases in proinflammatory factors and immune dysfunction and decreases in NRF2 and SIRT-1 signaling pathways, leading to neuroinflammation. Formononetin treatment attenuated or reversed these molecular changes. The transcriptome of SAMP8 mice was correlated with transcriptomic profiles of other AD mouse models in the GEO database. Conclusion: Neuroinflammation and decreased antioxidant and SIRT-1 signaling contributed to cognitive deficits in aged SAMP8 mice, which are potential therapeutic targets of formononetin in combination with other therapies.

2.
Exp Gerontol ; 196: 112577, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39241991

RESUMEN

Total cholesterol (TC) and the cholesterol oxidation product 27-hydroxycholesterol (27-OHC) are both increased in the elderly. Accumulating evidence has linked 27-OHC to glucose metabolism in the brain, while docosahexaenoic acid (DHA) has been shown to positively regulate the 27-OHC levels. However, it is unclear whether DHA may affect glucose metabolism in the brain by regulating 27-OHC levels. In this study, we hypothesized that DHA supplementation would modulate TC levels and reduce 27-OHC levels, thereby improving brain glucose metabolism in SAMP8 mice. The mice were assigned into the Control group and DHA dietary supplementation group. The study evaluated cholesterol levels, 27-OHC levels, and glucose metabolism in the brain. The results showed that DHA supplementation decreased serum levels of TC, low-density lipoprotein cholesterol (LDL-C), and increased levels of high-density lipoprotein cholesterol (HDL-C); and improved the glucose-corrected standardized uptake value of cortex, hippocampus, and whole brain regions in SAMP8 mice. In conclusion, supplementation of DHA could regulate the cholesterol composition and reduce the level of 27-OHC, thereby improving brain glucose metabolism in SAMP8 mice.

3.
Mol Nutr Food Res ; : e2400297, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39165040

RESUMEN

SCOPE: The prevalence of high-fat diet (HFD) consumption is increasing among middle-aged and older adults, which accelerates the aging process of this population and is more likely to induce lipid metabolism disorders. But the alleviation of ethanolic extract of propolis (EEP) on lipid metabolism disorders during aging remains unclear. METHODS AND RESULTS: This study assesseed the impact of EEP intervention (200 mg kg-1 bw) on aging and lipid metabolism disorders in HFD-fed senescence accelerate mouse prone 8 (SAMP8) mice. Findings indicate that EEP ameliorates hair luster degradation and weight gain, reduces systemic inflammation and metabolism levels, enhances hepatic antioxidant enzyme activities, and improves the hepatic expression of senescence-associated secretory phenotype and aging-related genes in HFD-fed SAMP8 mice. Histological staining demonstrates that EEP improves hepatic lipid deposition and inflammatory cell infiltration. Transcriptomic and lipidomic analysis reveal that EEP promotes fatty acid ß-oxidation by activating PPAR pathway, resulting in reduced hepatic lipid deposition, and attenuates bile acid (BA) accumulation by improving BA metabolism, which were ensured through qPCR validation of key genes and immunoblot validation of key proteins. CONCLUSIONS : EEP can regulate lipid metabolic dysregulation during aging accompanied by an HFD, potentially delaying the onset and progression of age-related diseases. This provides new approach for supporting healthy aging.

4.
Biomed Pharmacother ; 179: 117350, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39197189

RESUMEN

Rosemary (Rosmarinus officinalis L.) is a rich source of dietary bioactive compounds such as rosmarinic acid and carnosol with a large repertoire of pharmacological properties, including anti-inflammatory and neuroprotective activities. In the present study, we investigated rosemary as a potential new therapeutic agent for cognitive function and other symptoms of aging. In this present study, we have aimed to investigate the effects of oral administration of rosemary extract (RME) on learning and memory in the context of other biomarkers-related cognitive function and neurotransmitter levels in senescent accelerated prone 8 (SAMP8) mouse, a model of accelerating aging and Alzheimer's disease. The Morris water maze (MWM) test showed improved spatial learning and memory behavior in RME treated SAMP8 mouse. Moreover, RME decreased Aß42 and inflammatory cytokine levels and increased BDNF, Sirt1, and neurotransmitter levels in SAMP8 mouse. Whole-genome microarray analysis revealed that RME significantly increased gene expression related to oligodendrocyte differentiation, myelination, and ATP production in the hippocampus and decreased gene expression related to stress, neuroinflammation, and apoptosis. Also, in the SAMP8 hippocampus, RME significantly increased Olig1 and Olig2 expression. Altogether, our study is the first to report improvement of spatial learning and memory of RME, modulation of genes important for oligodendrogenesis, and Anti-neuroinflammatory effect by suppressing Aß42 levels in mouse brain and thus highlights the prospects of RME in the treatment of cognitive dysfunction and aging.

5.
Aging Cell ; : e14263, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961613

RESUMEN

Frailty is a geriatric, multi-dimensional syndrome that reflects multisystem physiological change and is a transversal measure of reduced resilience to negative events. It is characterized by weakness, frequent falls, cognitive decline, increased hospitalization and dead and represents a risk factor for the development of Alzheimer's disease (AD). The fact that frailty is recognized as a reversible condition encourages the identification of earlier biomarkers to timely predict and prevent its occurrence. SAMP8 (Senescence-Accelerated Mouse Prone-8) mice represent the most appropriate preclinical model to this aim and were used in this study to carry transcriptional and metabolic analyses in the brain and plasma, respectively, upon a characterization at cognitive, motor, structural, and neuropathological level at 2.5, 6, and 9 months of age. At 2.5 months, SAMP8 mice started displaying memory deficits, muscle weakness, and motor impairment. Functional alterations were associated with a neurodevelopmental deficiency associated with reduced neuronal density and glial cell loss. Through transcriptomics, we identified specific genetic signatures well distinguishing SAMP8 mice at 6 months, whereas plasma metabolomics allowed to segregate SAMP8 mice from SAMR1 already at 2.5 months of age by detecting constitutively lower levels of acylcarnitines and lipids in SAMP8 at all ages investigated correlating with functional deficits and neuropathological signs. Our findings suggest that specific genetic alterations at central level, as well as metabolomic changes in plasma, might allow to early assess a frail condition leading to dementia development, which paves the foundation for future investigation in a clinical setting.

6.
Nutrients ; 16(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38931262

RESUMEN

The skin, serving as the body's primary defense against external elements, plays a crucial role in protecting the body from infections and injuries, as well as maintaining overall homeostasis. Skin aging, a common manifestation of the aging process, involves the gradual deterioration of its normal structure and repair mechanisms. Addressing the issue of skin aging is increasingly imperative. Multiple pieces of evidence indicate the potential anti-aging effects of exogenous nucleotides (NTs) through their ability to inhibit oxidative stress and inflammation. This study aims to investigate whether exogenous NTs can slow down skin aging and elucidate the underlying mechanisms. To achieve this objective, senescence-accelerated mouse prone-8 (SAMP8) mice were utilized and randomly allocated into Aging, NTs-low, NTs-middle, and NTs-high groups, while senescence-accelerated mouse resistant 1 (SAMR1) mice were employed as the control group. After 9 months of NT intervention, dorsal skin samples were collected to analyze the pathology and assess the presence and expression of substances related to the aging process. The findings indicated that a high-dose NT treatment led to a significant increase in the thickness of the epithelium and dermal layers, as well as Hyp content (p < 0.05). Additionally, it was observed that low-dose NT intervention resulted in improved aging, as evidenced by a significant decrease in p16 expression (p < 0.05). Importantly, the administration of high doses of NTs could improve, in some ways, mitochondrial function, which is known to reduce oxidative stress and promote ATP and NAD+ production significantly. These observed effects may be linked to NT-induced autophagy, as evidenced by the decreased expression of p62 and increased expression of LC3BI/II in the intervention groups. Furthermore, NTs were found to upregulate pAMPK and PGC-1α expression while inhibiting the phosphorylation of p38MAPK, JNK, and ERK, suggesting that autophagy may be regulated through the AMPK and MAPK pathways. Therefore, the potential induction of autophagy by NTs may offer benefits in addressing skin aging through the activation of the AMPK pathway and the inhibition of the MAPK pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Nucleótidos , Envejecimiento de la Piel , Animales , Envejecimiento de la Piel/efectos de los fármacos , Autofagia/efectos de los fármacos , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Nucleótidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Piel/efectos de los fármacos , Piel/metabolismo , Masculino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo
7.
Exp Gerontol ; 192: 112443, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697556

RESUMEN

OBJECTIVE: Ferroptosis has been recognized as being closely associated with cognitive impairment. Research has established that Alzheimer's disease (AD)-associated proteins, such as amyloid precursor protein (APP) and phosphorylated tau, are involved in brain iron metabolism. These proteins are found in high concentrations within senile plaques and neurofibrillary tangles. Repetitive transcranial magnetic stimulation (rTMS) offers a non-pharmacological approach to AD treatment. This study aims to explore the potential therapeutic effects of rTMS on cognitive impairment through the modulation of the ferroptosis pathway, thereby laying both a theoretical and experimental groundwork for the application of rTMS in treating Alzheimer's disease. METHODS: The study utilized senescence-accelerated mouse prone 8 (SAMP8) mice to model brain aging-related cognitive impairment, with senescence-accelerated-mouse resistant 1 (SAMR1) mice acting as controls. The SAMP8 mice were subjected to high-frequency rTMS at 25 Hz for durations of 14 and 28 days. Cognitive function was evaluated using behavioral tests. Resting-state functional magnetic resonance imaging (rs-fMRI) assessed alterations in cerebral activity by measuring the fractional amplitude of low-frequency fluctuations (fALFF) of the blood oxygen level-dependent signal. Neuronal recovery post-rTMS in the SAMP8 model was examined via HE and Nissl staining. Immunohistochemistry was employed to detect the expression of APP and Phospho-Tau (Thr231). Oxidative stress markers were quantified using biochemical assay kits. ELISA methods were utilized to measure hippocampal levels of Fe2+ and Aß1-42. Finally, the expression of proteins related to the ferroptosis pathway was determined through western blot analysis. RESULTS: The findings indicate that 25 Hz rTMS enhances cognitive function and augments cerebral activity in SAMP8 model mice. Treatment with rTMS in these mice resulted in diminished oxidative stress and safeguarded neurons against damage. Additionally, iron accumulation was mitigated, and the expression of ferroptosis pathway proteins Gpx4, system Xc-, and Nrf2 was elevated. CONCLUSIONS: The Tau/APP-Fe-GPX4/system Xc-/Nrf2 pathway is implicated in the remedial effects of rTMS on cognitive dysfunction, offering a theoretical and experimental basis for employing rTMS in AD treatment.


Asunto(s)
Envejecimiento , Disfunción Cognitiva , Modelos Animales de Enfermedad , Ferroptosis , Estimulación Magnética Transcraneal , Animales , Estimulación Magnética Transcraneal/métodos , Ferroptosis/fisiología , Disfunción Cognitiva/terapia , Ratones , Envejecimiento/fisiología , Masculino , Imagen por Resonancia Magnética , Proteínas tau/metabolismo , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
8.
Phytomedicine ; 130: 155671, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38763005

RESUMEN

BACKGROUND: PRG is derived from Phellinus ribis and is a homogeneous polysaccharide with well-defined structural information. PRG was found to have significant in vitro neurotrophic and neuroprotective activities. Thus, PRG might be a potential treatment for Alzheimer's disease. However, the related mechanisms of action are still unclear, so deeper in vivo experimental validation and the potential mechanisms need to be investigated. PURPOSE: The effects of PRG on AD mice were investigated using Senescence-accelerated SAMP8 mice as an AD model to elucidate the crucial molecular mechanisms. METHODS: PRG was obtained from Phellinus ribis by water-alcohol precipitation, column chromatography, and ultrafiltration. The Morris water maze and novel object recognition behavioral assays were used to evaluate the effects of PRG in AD mice. Nissl staining, the TUNEL apoptosis assay, and Golgi staining were used to assess brain neuronal cell damage, apoptosis, and neuronal status. Enzyme-linked immunosorbent assays, Western blotting, and immunofluorescence were used to explore the impacts of correlated factors and protein pathways under relevant mechanisms. RESULTS: The findings suggest that PRG improved learning ability and spatial memory capacity in SAMP8 mice. PRG hastened the disintegration of ß-amyloid, reduced the content and abnormal accumulation of the toxic Aß1-42 protein, and decreased apoptosis. PRG activated the BDNF/ERK/CREB signaling pathway through a cascade, exerted neurotrophic effects, regulated cell proliferation and differentiation, increased neuronal dendritic branching and spine density, and improved synaptic plasticity. CONCLUSION: PRG promoted ß-amyloid degradation to reduce neuronal damage and apoptosis. It exerted neurotrophic effects by activating the BDNF/ERK/CREB pathway, promoting neuronal dendritic branching and dendritic spine growth, regulating cell proliferation and differentiation, and improving synaptic plasticity, which improved AD. Taken together, as a novel natural active polysaccharide with a well-defined structure, PRG affected AD symptoms in senescence-accelerated mice by interacting with multiple targets. The results indicate that PRG is a promising potential anti-AD drug candidate.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Factor Neurotrófico Derivado del Encéfalo , Disfunción Cognitiva , Sistema de Señalización de MAP Quinasas , Animales , Masculino , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Apoptosis/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Polisacáridos/farmacología , Polisacáridos/química , Memoria Espacial/efectos de los fármacos
9.
Reprod Biol Endocrinol ; 22(1): 52, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711160

RESUMEN

BACKGROUND: Elevated FSH often occurs in women of advanced maternal age (AMA, age ≥ 35) and in infertility patients undergoing controlled ovarian stimulation (COS). There is controversy on whether high endogenous FSH contributes to infertility and whether high exogenous FSH adversely impacts patient pregnancy rates. METHODS: The senescence-accelerated mouse-prone-8 (SAMP8) model of female reproductive aging was employed to assess the separate impacts of age and high FSH activity on the percentages (%) of viable and mature ovulated oocytes recovered after gonadotropin treatment. Young and midlife mice were treated with the FSH analog equine chorionic gonadotropin (eCG) to model both endogenous FSH elevation and exogenous FSH elevation. Previously we showed the activin inhibitor ActRIIB:Fc increases oocyte quality by preventing chromosome and spindle misalignments. Therefore, ActRIIB:Fc treatment was performed in an effort to increase % oocyte viability and % oocyte maturation. RESULTS: The high FSH activity of eCG is ootoxic to ovulatory oocytes, with greater decreases in % viable oocytes in midlife than young mice. High FSH activity of eCG potently inhibits oocyte maturation, decreasing the % of mature oocytes to similar degrees in young and midlife mice. ActRIIB:Fc treatment does not prevent eCG ootoxicity, but it restores most oocyte maturation impeded by eCG. CONCLUSIONS: FSH ootoxicity to ovulatory oocytes and FSH maturation inhibition pose a paradox given the well-known pro-growth and pro-maturation activities of FSH in the earlier stages of oocyte growth. We propose the FOOT Hypothesis ("FSH OoToxicity Hypothesis), that FSH ootoxicity to ovulatory oocytes comprises a new driver of infertility and low pregnancy success rates in DOR women attempting spontaneous pregnancy and in COS/IUI patients, especially AMA women. We speculate that endogenous FSH elevation also contributes to reduced fecundity in these DOR and COS/IUI patients. Restoration of oocyte maturation by ActRIB:Fc suggests that activin suppresses oocyte maturation in vivo. This contrasts with prior studies showing activin A promotes oocyte maturation in vitro. Improved oocyte maturation with agents that decrease endogenous activin activity with high specificity may have therapeutic benefit for COS/IVF patients, COS/IUI patients, and DOR patients attempting spontaneous pregnancies.


Asunto(s)
Receptores de Activinas Tipo II , Oocitos , Animales , Femenino , Oocitos/efectos de los fármacos , Ratones , Receptores de Activinas Tipo II/metabolismo , Ovulación/efectos de los fármacos , Gonadotropina Coriónica/farmacología , Hormona Folículo Estimulante/sangre , Oogénesis/efectos de los fármacos , Inducción de la Ovulación/métodos , Fragmentos Fc de Inmunoglobulinas/farmacología , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Embarazo , Activinas
10.
J Toxicol Environ Health A ; 87(11): 471-479, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38590254

RESUMEN

Cannabidiol (CBD), a natural component extracted from Cannabis sativa L. exerts neuroprotective, antioxidant, and anti-inflammatory effects in Alzheimer's disease (AD), a disease characterized by impaired cognition and accumulation of amyloid-B peptides (Aß). Interactions between the gut and central nervous system (microbiota-gut-brain axis) play a critical role in the pathogenesis of neurodegenerative disorder AD. At present investigations into the mechanisms underlying the neuroprotective action of CBD in AD are not conclusive. The aim of this study was thus to examine the influence of CBD on cognition and involvement of the microbiota-gut-brain axis using a senescence-accelerated mouse prone 8 (SAMP8) model. Data demonstrated that administration of CBD to SAMP8 mice improved cognitive function as evidenced from the Morris water maze test and increased hippocampal activated microglia shift from M1 to M2. In addition, CBD elevated levels of Bacteriodetes associated with a fall in Firmicutes providing morphologically a protective intestinal barrier which subsequently reduced leakage of intestinal toxic metabolites. Further, CBD was found to reduce the levels of hippocampal and colon epithelial cells lipopolysaccharide (LPS), known to be increased in AD leading to impaired gastrointestinal motility, thereby promoting neuroinflammation and subsequent neuronal death. Our findings demonstrated that CBD may be considered a beneficial therapeutic drug to counteract AD-mediated cognitive impairment and restore gut microbial functions associated with the observed neuroprotective mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Cannabidiol , Disfunción Cognitiva , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Eje Cerebro-Intestino , Cognición , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad
11.
J Toxicol Environ Health A ; 87(10): 428-435, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38551404

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease associated with long non-coding RNAs and DNA methylation; however, the mechanisms underlying the role of lncRNA small nucleolar RNA host gene 1 (lncRNA SNHG1) and subsequent involvement of DNA methylation in AD development are not known. The aim of this study was to examine the regulatory mechanisms attributed to lncRNA SNHG1 gene utilizing 2 strains of senescence-accelerated mouse prone 8 (SAMP8) model of AD and compared to senescence-accelerated mouse resistant (SAMR) considered a control. Both strains of the mouse were transfected with either blank virus, psLenti-U6-SNHG1(low gene expression) virus, and psLenti-pA-SNHG1(gene overexpression) virus via a single injection into the brains for 2 weeks. At 2 weeks mice were subjected to a Morris water maze to determine any behavioral effects followed by sacrifice to extract hippocampal tissue for Western blotting to measure protein expression of p-tau, DNMT1, DNMT3A, DNMT3B, TET1, and p-Akt. No marked alterations were noted in any parameters following blank virus transfection. In SAMP8 mice, a significant decrease was noted in protein expression of DNMT1, DNMT3A, DNMT3B, and p-Akt associated with rise in p-tau and TET1. Transfection with ps-Lenti-U6-SNHG1 alone in SAMR1 mice resulted in a significant rise in DNMTs and p-Akt and a fall in p-tau and TET1. Transfection of SAMP8 with ps-Lenti-U6-SNHG1 blocked effects on overexpression noted in this mouse strain. However, knockdown of lncRNA SNHG1 yielded the opposite results as found in SAMR1 mice. In conclusion, the knockdown of lncRNA SNHG1 enhanced DNA methylation through the PI3K/Akt signaling pathway, thereby reducing the phosphorylation levels of tau in SAMP8 AD model mice with ameliorating brain damage attributed to p-tau accumulation with consequent neuroprotection.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , ARN Largo no Codificante , Ratones , Animales , Enfermedad de Alzheimer/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Metilación de ADN , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedades Neurodegenerativas/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo
12.
Nutrition ; 122: 112372, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38428218

RESUMEN

OBJECTIVES: Aging and excessive fat intake may additively induce dysbiosis of the gut microbiota and intestinal inflammatory damage. Here, we analyzed microbiota dysbiosis and intestinal injury in high-fat diet-loaded senescence-accelerated mice (SAMP8). Additionally, we examined whether treatment with molecular hydrogen could improve the intestinal environment. METHODS: SAMP8 and SAMR1 (control) mice were first fed a normal diet (ND) or high-fat diet (HFD) for 10 wk (n = 10 each group). Subsequently, HFD was supplemented with a placebo jelly or hydrogen-rich jelly (HRJ) for 4 wk. After treatment, isolated small intestinal tissues were used for hematoxylin and eosin staining, immunofluorescence staining, and thiobarbituric acid reactive substances (TBARS) assay. Furthermore, we analyzed alterations in the microbiota composition in cecal feces using 16S rRNA gene analysis for microbiota profiling. Statistical analyses were performed using unpaired Student's t tests or one-way analysis of variance and Tukey's post hoc test for multiple comparisons. RESULT: HFD feeding reduced the expression of caudal-related homeobox transcription factor 2 (CDX2) and 5-bromo-2'-deoxyuridine (BrdU) and enhanced malondialdehyde (MDA) levels in the small intestine of SAMP8. HRJ treatment improved the reduction in CDX2 and BrdU and enhanced MDA levels. We performed a sequence analysis of the gut microbiota at the genus level and identified 283 different bacterial genera from the 30 samples analyzed in the study. Among them, Parvibacter positively correlated with both HFD intake and aging, whereas 10 bacteria, including Anaerofustis, Anaerosporobacter, Butyricicoccus, and Ruminococcus were negatively correlated with both HFD and aging. HRJ treatment increased Lactinobactor and decreased Akkermansia, Gracilibacter, and Marvinbryantia abundance. CONCLUSION: Our findings suggest that treatment with molecular hydrogen may affect microbiota profiling and suppress intestinal injury in HFD-loaded SAMP8.


Asunto(s)
Dieta Alta en Grasa , Enfermedades Intestinales , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Disbiosis/microbiología , ARN Ribosómico 16S/genética , Bromodesoxiuridina/uso terapéutico , Intestino Delgado/metabolismo , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/etiología , Ratones Endogámicos C57BL
13.
Brain Behav Immun ; 119: 14-27, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38548184

RESUMEN

BACKGROUND: Alzheimer's disease (AD), the most prevalent type of dementia, still lacks disease-modifying treatment strategies. Recent evidence indicates that maintaining gut microbiota homeostasis plays a crucial role in AD. Targeted regulation of gut microbiota, including probiotics, is anticipated to emerge as a potential approach for AD treatment. However, the efficacy and mechanism of multi-strain probiotics treatment in AD remain unclear. METHODS: In this study, 6-month-old senescence-accelerated-mouse-prone 8 (SAMP8) and senescence-accelerated-mouse-resistant 1 (SAMR1) were utilized. The SAMP8 mice were treated with probiotic-2 (P2, a probiotic mixture of Bifidobacterium lactis and Lactobacillus rhamnosus) and probiotic-3 (P3, a probiotic mixture of Bifidobacterium lactis, Lactobacillus acidophilus, and Lactobacillus rhamnosus) (1 × 109 colony-forming units) once daily for 8 weeks. Morris water maze (MWM) and novel object recognition (NOR) tests were employed to assess the memory ability. 16S sequencing was applied to determine the composition of gut microbiota, along with detecting serum short-chain fatty acids (SCFAs) concentrations. Neural injury, Aß and Tau pathology, and neuroinflammation level were assessed through western blot and immunofluorescence. Finally, potential molecular mechanisms was explored through transcriptomic analysis and western blotting. RESULTS: The MWM and NOR test results indicated a significant improvement in the cognitive level of SAMP8 mice treated with P2 and P3 probiotics compared to the SAMP8 control group. Fecal 16S sequencing revealed an evident difference in the α diversity index between SAMP8 and SAMR1 mice, while the α diversity of SAMP8 mice remained unchanged after P2 and P3 treatment. At the genus level, the relative abundance of ten bacteria differed significantly among the four groups. Multi-strain probiotics treatment could modulate serum SCFAs (valeric acid, isovaleric acid, and hexanoic acid) concentration. Neuropathological results demonstrated a substantial decrease in neural injury, Aß and Tau pathology and neuroinflammation in the brain of SAMP8 mice treated with P3 and P2. Transcriptomic analysis identified the chemokine signaling pathway as the most significantly enriched signaling pathway between SAMP8 and SAMR1 mice. Western blot test indicated a significant change in the phosphorylation level of downstream AKT/GSK-3ß between the SAMP8 and SAMR1 groups, which could be reversed through P2 and P3 treatment. CONCLUSIONS: Multi-strain probiotics treatment can ameliorate cognitive impairment and pathological change in SAMP8 mice, including neural damage, Aß and Tau pathology, and neuroinflammation. This effect is associated with the regulation of the phosphorylation of the AKT/GSK-3ß pathway.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Glucógeno Sintasa Quinasa 3 beta , Probióticos , Proteínas Proto-Oncogénicas c-akt , Animales , Probióticos/farmacología , Probióticos/uso terapéutico , Ratones , Enfermedad de Alzheimer/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Disfunción Cognitiva/metabolismo , Masculino , Envejecimiento/metabolismo , Transducción de Señal/efectos de los fármacos , Lacticaseibacillus rhamnosus , Proteínas tau/metabolismo
14.
J Cell Mol Med ; 28(6): e18176, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38454800

RESUMEN

Senescent kidney can lead to the maladaptive repairment and predispose age-related kidney diseases. Here, we explore the renal anti-senescence effect of a known kind of drug, sodium-dependent glucose transporters 2 inhibitor (SGLT2i). After 4 months intragastrically administration with dapagliflozin on senescence-accelerated mouse prone 8 (SAMP8) strain mice, the physiologically effects (lowering urine protein, enhancing glomerular blood perfusion, inhibiting expression of senescence-related biomarkers) and structural changes (improving kidney atrophy, alleviating fibrosis, decreasing glomerular mesangial proliferation) indicate the potential value of delaying kidney senescence of SGLT2i. Senescent human proximal tubular epithelial (HK-2) cells induced by H2 O2 also exhibit lower senescent markers after dapagliflozin treatment. Further mechanism exploration suggests LTBP2 have the great possibility to be the target for SGLT2i to exert its renal anti-senescence role. Dapagliflozin down-regulate the LTBP2 expression in kidney tissues and HK-2 cells with senescent phenotypes. Immunofluorescence staining show SGLT2 and LTBP2 exist colocalization, and protein-docking analysis implies there is salt-bridge formation between them; these all indicate the possibility of weak-interaction between the two proteins. Apart from reducing LTBP2 expression in intracellular area induced by H2 O2 , dapagliflozin also decrease the concentration of LTBP2 in cell culture medium. Together, these results reveal dapagliflozin can delay natural kidney senescence in non-diabetes environment; the mechanism may be through regulating the role of LTBP2.


Asunto(s)
Enfermedades Renales , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ratones , Humanos , Animales , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Riñón/metabolismo , Glucósidos/uso terapéutico , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Enfermedades Renales/metabolismo , Proteínas de Unión a TGF-beta Latente
15.
Aging Cell ; 23(5): e14120, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38403918

RESUMEN

Long considered to fluctuate between pro- and anti-inflammatory states, it has now become evident that microglia occupy a variegated phenotypic landscape with relevance to aging and neurodegeneration. However, whether specific microglial subsets converge in or contribute to both processes that eventually affect brain function is less clear. To investigate this, we analyzed microglial heterogeneity in a tauopathy mouse model (K18-seeded P301L) and an accelerated aging model (Senescence-Accelerated Mouse-Prone 8, SAMP8) using cellular indexing of transcriptomes and epitopes by sequencing. We found that widespread tau pathology in K18-seeded P301L mice caused a significant change in the number and morphology of microglia, but only a mild overrepresentation of disease-associated microglia. At the cell population-level, we observed a marked upregulation of the calprotectin-encoding genes S100a8 and S100a9. In 9-month-old SAMP8 mice, we identified a unique microglial subpopulation that showed partial similarity with the disease-associated microglia phenotype and was additionally characterized by a high expression of the same calprotectin gene set. Immunostaining for S100A8 revealed that this population was enriched in the hippocampus, correlating with the cognitive impairment observed in this model. However, incomplete colocalization between their residence and markers of neuronal loss suggests regional specificity. Importantly, S100A8-positive microglia were also retrieved in brain biopsies of human AD and tauopathy patients as well as in a biopsy of an aged individual without reported pathology. Thus, the emergence of S100A8-positive microglia portrays a conspicuous commonality between accelerated aging and tauopathy progression, which may have relevance for ensuing brain dysfunction.


Asunto(s)
Envejecimiento , Encéfalo , Calgranulina A , Microglía , Animales , Microglía/metabolismo , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Calgranulina A/metabolismo , Calgranulina A/genética , Envejecimiento/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genética , Humanos , Modelos Animales de Enfermedad , Tauopatías/metabolismo , Tauopatías/patología , Masculino , Ratones Transgénicos
16.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255794

RESUMEN

Hydroxyhydroquinone (HHQ) is an oxidative component produced by roasting coffee beans and has been reported to generate relatively large amounts of reactive oxygen species (ROS). In this study, we used senescence-accelerated mouse prone 8 (SAMP8) mice to determine whether HHQ consumption increases oxidative-stress-induced injury, because in SAMP8 mice, the activity of 8-oxoguanine DNA glycosylase 1, which repairs oxidative modifications in DNA, is decreased. The results showed that two out of twelve (16.7%) HHQ-treated mice presented polyuria and glucosuria around 2 months after the start of treatment, indicating that HHQ may act as a mutagen against SAMP8 mice, which is sensitive to oxidative damage. No abnormalities were observed in the chlorogenic acid (coffee polyphenol, CPP)-treated group. The concentration of hydrogen peroxide in the serum of SAMP8 mice was significantly higher than that in SAMR1 (senescence-resistant) control mice, and the concentration was further increased in the HHQ-treated group. CPP, when coexisting with HHQ at the rate contained in roasted coffee, decreased the amount of hydrogen peroxide in the serum of SAMP8 mice. Although CPP can act both oxidatively and antioxidatively as a polyphenol, CPP acts more antioxidatively when coexisting with HHQ. Thus, the oxidative effect of HHQ was shown to be counteracted by CPP.


Asunto(s)
Ácido Clorogénico , Hidroquinonas , Polifenoles , Animales , Ratones , Ácido Clorogénico/farmacología , Polifenoles/farmacología , Mutágenos/toxicidad , Peróxido de Hidrógeno , Estrés Oxidativo , ADN
17.
Geroscience ; 46(2): 1671-1691, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37721682

RESUMEN

In recent years, exploring natural compounds with functional properties to ameliorate aging-associated cognitive decline has become a research priority to ensure healthy aging. In the present study, we investigated the effects of Trigonelline (TG), a plant alkaloid, on memory and spatial learning in 16-week-old senescence-accelerated mouse model SAMP8 using an integrated approach for cognitive and molecular biology aspects. After 30 days of oral administration of TG at the dose of 5 mg/kg/day, the mice were trained in Morris Water Maze task. TG-treated SAMP8 mice exhibited significant improvement in the parameters of escape latency, distance moved, and annulus crossing index. Next, we performed a whole-genome transcriptome profiling of the mouse hippocampus using microarrays. Gene ontology analyses showed that a wide range of biological processes, including nervous system development, mitochondrial function, ATP synthesis, and several signaling pathways related to inflammation, autophagy, and neurotransmitter release, were significantly enriched in TG-treated SAMP8 compared to nontreated. Further, a nonlinear dimensionality reduction technique, Uniform Manifold Approximation and Projection (UMAP), was applied to identify clusters of functions that revealed TG primarily regulated pathways related to inflammation, followed by those involved in neurotransmitter release. In addition, a protein-protein interaction network analysis indicated that TG may exert its biological effects through negatively modulating Traf6-mediated NF-κB activation. Finally, ELISA test showed that TG treatment significantly decreased proinflammatory cytokines- TNFα and IL6 and increased neurotransmitters- dopamine, noradrenaline, and serotonin in mouse hippocampus. Altogether, our integrated bio-cognitive approach highlights the potential of TG in alleviating age-related memory and spatial impairment.


Asunto(s)
Alcaloides , Citocinas , Ratones , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Alcaloides/farmacología , Alcaloides/uso terapéutico , Trastornos de la Memoria/tratamiento farmacológico , Neurotransmisores/uso terapéutico , Inflamación
18.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1012697

RESUMEN

ObjectiveTo investigate the impact of early intervention with Yishen Huazhuo prescription (YHP) on the learning and memory of accelerated aging model mice, as well as its underlying mechanism. MethodForty-eight 3-month-old male SAMP8 mice were randomly assigned into four groups, including the model group, low-dose YHP group, high-dose YHP group, and donepezil group. Additionally, 24 SAMR1 mice of the same age were divided into a control group and a YHP treatment control group, each consisting of 12 mice. The YHP groups received YHP at doses of 6.24 g·kg-1 and 12.48 g·kg-1, while the donepezil group was treated with donepezil at a dose of 0.65 mg·kg-1. The model group and control groups were given physiological saline. The mice were gavaged once daily for a duration of four weeks. Spatial learning and memory abilities of mice were assessed using the Morris water maze test. Immunofluorescence staining was employed to evaluate neuronal density as well as expression levels of M1 microglial (MG) polarization marker inducible nitric oxide synthase (iNOS) and M2 MG polarization marker arginase-1 (Arg-1) in the hippocampus region. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum levels of pro-inflammatory factor interleukin 1β (IL-1β) and anti-inflammatory factor transforming growth factor-β1 (TGF-β1). Furthermore, Western blot analysis was conducted to determine expressions of amyloid β peptide1-42 (Aβ1-42) along with triggering receptor expressed on myeloid cells 2 (TREM2)/nuclear factor kappa B (NF-κB) signaling pathway-related proteins TREM2, phospho (p)-NF-κB p65, and phospho-inhibitory kappa B kinase β (IKKβ) in the hippocampus. ResultCompared with the control group, the model group exhibited a significantly prolonged escape latency (P<0.01), a significant reduction in neuron-specific nuclear protein (NeuN) expression in the hippocampus, a significant increase in iNOS expression in MG, and a significant decrease in Arg-1 expression. The serum IL-1β content was significantly increased, while the TGF-β1 content was significantly decreased. Additionally, there was a significant decrease in TREM2 expression in the hippocampus and significant increases in p-NF-κB p65, p-IKKβ, and Aβ1-42 expressions (P<0.05, P<0.01). However, no significant changes were observed in escape latency, times of crossing the platform, and hippocampal NeuN expression in the YHP treatment control group. Conversely, iNOS expression in MG as well as the hippocampal p-NF-κB p65, p-IKKβ, and Aβ1-42 expressions were significantly decreased. Furthermore, TREM2 expression was significantly increased (P<0.05, P<0.01). In comparison to the model group, the low-dose YHP group showed a significantly shortened escape latency and an increased number of crossing the platform (P<0.05, P<0.01). In the high-dose YHP group, the escape latency was significantly shortened (P<0.05). In the low-dose YHP group, high-dose YHP group, the expression of NeuN in the hippocampus was significantly increased, the expression of iNOS in MG was significantly decreased, and the expression of Arg-l was significantly increased. The serum IL-1β content was significantly decreased, while the TGF-β1 content was significantly increased. Furthermore, the expression of TREM2 in the hippocampus was significantly increased, and the expressions of p-NF-κB p65, p-IKKβ, and Aβ1-42 were significantly decreased (P<0.01). ConclusionEarly YHP intervention may promote the transformation of hippocampal MG from M1 to M2 by regulating the TREM2/NF-κB signaling pathway, reduce the release of neuroinflammatory factors, protect hippocampal neurons, and reduce the deposition of Aβ1-42, and finally delay the occurrence of learning and memory decline in SAMP8 mice.

19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1026852

RESUMEN

Objective To observe the effects of electroacupuncture on the motor function and mitochondrial dynamics of skeletal muscle of SAMP8 mice;To explore the mechanism of electroacupuncture in improving the motor dysfunction of Alzheimer disease(AD)from the perspective of mitochondrial dynamics.Methods Totally 18 SAMP8 mice were divided into model group and electroacupuncture group,with 9 mice in each group,and the SAMR1 mice with the same age were set as control group."Baihui","Dazhui"and"Shenshu"were selected in the electroacupuncture group,and electroacupuncture was performed daily for 20 min,8 d as a course of treatment.Each course of treatment was separated by 2 d,for a total of 3 courses of treatment.The model group and the control group were not intervened.The motor function of mice was tested by grip strength test,suspension test,hind limb extension test and Morris water maze experiment.The morphology and structure of gastrocnemius were observed by HE staining,ATP content in gastrocnemius was determined by colorimetry,the mRNA expression of optic atrophy 1(OPA1),mitofusin 2(MFN2)and dynamin-related protein 1(DRP1)in gastrocnemius were detected by real-time quantitative PCR,the expressions of OPA1,MFN2 and DRP1 in gastrocnemius were detected by Western blot.Results Compared with the control group,the grip strength,the score in suspension test,and the average speed and maximum speed of Morris water maze experiment of mice in model group significantly decreased(P<0.01);the arrangement of fibers in the gastrocnemius muscle tissue was disordered,the gaps become wider,and the distribution of nuclei was uneven;the ATP content in the gastrocnemius muscle tissue was significantly decreased(P<0.01),the mRNA and protein expressions of OPA1 and MFN2 were significantly decreased(P<0.01),and the expression of DRP1 mRNA and protein significantly increased(P<0.01).Compared with the model group,the grip strength,the score in suspension test,and the average speed and maximum speed of Morris water maze experiment in electroacupuncture group significantly increased(P<0.01);the arrangement of gastrocnemius muscle tissue was relatively neat,the gaps become narrower,and the distribution of nuclei was more uniform;the ATP content in gastrocnemius muscle tissue significantly increased(P<0.01),while the mRNA and protein expressions of OPA1 and MFN2 significantly increased(P<0.05,P<0.01),the expression of DRP1 mRNA and protein significantly decreased(P<0.01).Conclusion Electroacupuncture can improve the skeletal muscle morphological structure and motor dysfunction of SAMP8 mice,and the mechanism may be related to the correction of skeletal muscle mitochondrial dynamic imbalance and the increase of skeletal muscle ATP content.

20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1026853

RESUMEN

Objective To observe the effects of Xixin Decoction on the blood-brain barrier permeability and the expressions of P-glycoprotein(P-gp),cannabinoid receptor 1(CB1)and cannabinoid receptor 2(CB2)in hippocampal tissue of rapidly aging mice(SAMP8);To explore the possible mechanism of Xixin Decoction in the treatment of Alzheimer disease(AD).Methods Totally 60 SAMP8 mice were randomly divided into model group,probiotics group,and Xixin Decoction high-,medium-and low-dosage groups,with 12 mice in each group,another 12 SAMR1 mice were set as control group.The medicated groups received corresponding drugs by gavage for 10 weeks respectively,while the control group and model group were gavaged with equal volume of distilled water.Morris water maze test was used to detect the learning and memory ability of mice,the blood-brain barrier permeability was detected by Evans blue method,the contents of matrix metalloproteinase 9(MMP9),nuclear factor(NF)-κB and tumor necrosis factor-α(TNF-α)in serum were determined by ELISA,the expressions of P-gp,CB1 and CB2 in hippocampal tissue were detected by Western blot,P-gp expression in hippocampal tissue was detected by immunofluorescence staining.Results Compared with the control group,the learning and memory ability of mice in model group significantly decreased,Evans blue exudation in brain tissue significantly increased,the contents of MMP9,TNF-α and NF-κB in serum significantly increased,the expressions of P-gp and CB2 protein significantly decreased,the expression of CB1 protein significantly increased,with statistical significance(P<0.01,P<0.05).Compared with the model group,the learning and memory ability of mice in Xixin Decoction high-dosage group significantly increased,the Evans blue exudation in brain tissue significantly decreased,the contents of MMP9,TNF-α and NF-κB in serum significantly decreased,the protein expressions of P-gp and CB2 significantly increased,and the protein expression of CB1 significantly decreased,with statistical significance(P<0.01,P<0.05).Conclusion Xixin Decoction can improve the spatial learning and memory ability of AD model mice,and its mechanism is related to regulating the permeability of the blood-brain barrier and related protein expression,and inhibiting neuroinflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA