Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39199277

RESUMEN

We extended our model of the S1 tubular segment to address the mechanisms by which SGLT1 interacts with lateral Na/K pumps and tight junctional complexes to generate isosmotic fluid reabsorption via tubular segment S3. The strategy applied allowed for simulation of laboratory experiments. Reproducing known experimental results constrained the range of acceptable model outputs and contributed to minimizing the free parameter space. (1) In experimental conditions, published Na and K concentrations of proximal kidney cells were found to deviate substantially from their normal physiological levels. Analysis of the mechanisms involved suggested insufficient oxygen supply as the cause and, indirectly, that a main function of the Na/H exchanger (NHE3) is to extrude protons stemming from mitochondrial energy metabolism. (2) The water path from the lumen to the peritubular space passed through aquaporins on the cell membrane and claudin-2 at paracellular tight junctions, with an additional contribution to water transport by the coupling of 1 glucose:2 Na:400 H2O in SGLT1. (3) A Na-uptake component passed through paracellular junctions via solvent drag in Na- and water-permeable claudin-2, thus bypassing the Na/K pump, in agreement with the findings of early studies. (4) Electrical crosstalk between apical rheogenic SGLT1 and lateral rheogenic Na/K pumps resulted in tight coupling of luminal glucose uptake and transepithelial water flow. (5) Isosmotic transport was achieved by Na-mediated ion recirculation at the peritubular membrane.


Asunto(s)
Transportador 1 de Sodio-Glucosa , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Sodio/metabolismo , Humanos , Transporte Biológico , Modelos Biológicos , Agua/metabolismo , Riñón/metabolismo , Uniones Estrechas/metabolismo , Membrana Celular/metabolismo , Animales , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Glucosa/metabolismo , Potasio/metabolismo
2.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232326

RESUMEN

The decrease in the number of resident progenitor cells with age was shown for several organs. Such a loss is associated with a decline in regenerative capacity and a greater vulnerability of organs to injury. However, experiments evaluating the number of progenitor cells in the kidney during aging have not been performed until recently. Our study tried to address the change in the number of renal progenitor cells with age. Experiments were carried out on young and old transgenic nestin-green fluorescent protein (GFP) reporter mice, since nestin is suggested to be one of the markers of progenitor cells. We found that nestin+ cells in kidney tissue were located in the putative niches of resident renal progenitor cells. Evaluation of the amount of nestin+ cells in the kidneys of different ages revealed a multifold decrease in the levels of nestin+ cells in old mice. In vitro experiments on primary cultures of renal tubular cells showed that all cells including nestin+ cells from old mice had a lower proliferation rate. Moreover, the resistance to damaging factors was reduced in cells obtained from old mice. Our data indicate the loss of resident progenitor cells in kidneys and a decrease in renal cells proliferative capacity with aging.


Asunto(s)
Riñón , Células Madre , Animales , Proteínas Fluorescentes Verdes/metabolismo , Riñón/metabolismo , Ratones , Ratones Transgénicos , Nestina/genética , Nestina/metabolismo , Células Madre/metabolismo
3.
Channels (Austin) ; 13(1): 455-476, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31647368

RESUMEN

We systematically predict the internal flexibility of the S3 segment, one of the most mobile elements in the voltage-sensor domain. By analyzing the primary amino acid sequences of V-sensor containing proteins, including Hv1, TPC channels and the voltage-sensing phosphatases, we established correlations between the local flexibility and modes of activation for different members of the VGIC superfamily. Taking advantage of the structural information available, we also assessed structural aspects to understand the role played by the flexibility of S3 during the gating of the pore. We found that S3 flexibility is mainly determined by two specific regions: (1) a short NxxD motif in the N-half portion of the helix (S3a), and (2) a short sequence at the beginning of the so-called paddle motif where the segment has a kink that, in some cases, divide S3 into two distinct helices (S3a and S3b). A good correlation between the flexibility of S3 and the reported sensitivity to temperature and mechanical stretch was found. Thus, if the channel exhibits high sensitivity to heat or membrane stretch, local S3 flexibility is low. On the other hand, high flexibility of S3 is preferentially associated to channels showing poor heat and mechanical sensitivities. In contrast, we did not find any apparent correlation between S3 flexibility and voltage or ligand dependence. Overall, our results provide valuable insights into the dynamics of channel-gating and its modulation.


Asunto(s)
Eucariontes/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Eucariontes/química , Eucariontes/clasificación , Eucariontes/genética , Activación del Canal Iónico , Canales Iónicos/genética , Ligandos , Filogenia , Conformación Proteica , Alineación de Secuencia
4.
J Appl Toxicol ; 35(12): 1594-600, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25772475

RESUMEN

Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Enfermedades Renales/inducido químicamente , Túbulos Renales Proximales/efectos de los fármacos , Uranio/toxicidad , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Etiquetado Corte-Fin in Situ , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/ultraestructura , Masculino , Ratas Wistar , Toxicocinética , Uranio/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA