Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 115: 354-359, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28419961

RESUMEN

Exogenous supply of nitric oxide (NO) increases drought tolerance in sugarcane plants. However, little is known about the role of NO produced by plants under water deficit. The aim of this study was to test the hypothesis that drought-tolerance in sugarcane is associated with NO production and metabolism, with the more drought-tolerant genotype presenting higher NO accumulation in plant tissues. The sugarcane genotypes IACSP95-5000 (drought-tolerant) and IACSP97-7065 (drought-sensitive) were submitted to water deficit by adding polyethylene glycol (PEG-8000) in nutrient solution to reduce the osmotic potential to -0.4 MPa. To evaluate short-time responses to water deficit, leaf and root samples were taken after 24 h under water deficit. The drought-tolerant genotype presented higher root extracellular NO content, which was accompanied by higher root nitrate reductase (NR) activity as compared to the drought-sensitive genotype under water deficit. In addition, the drought-tolerant genotype had higher leaf intracellular NO content than the drought-sensitive one. IACSP95-5000 exhibited decreases in root S-nitrosoglutathione reductase (GSNOR) activity under water deficit, suggesting that S-nitrosoglutathione (GSNO) is less degraded and that the drought-tolerant genotype has a higher natural reservoir of NO than the drought-sensitive one. Those differences in intracellular and extracellular NO contents and enzymatic activities were associated with higher leaf hydration in the drought-tolerant genotype as compared to the sensitive one under water deficit.


Asunto(s)
Sequías , Óxido Nítrico/metabolismo , Saccharum/metabolismo , Saccharum/fisiología , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genotipo , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , S-Nitrosoglutatión/metabolismo
2.
Nitric Oxide ; 68: 77-90, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28109803

RESUMEN

Despite the significant impacts of light on nitric oxide (NO) levels in plants, the mechanism underlying the influence of this environmental factor on NO metabolism remains poorly understood. A critical mechanism controlling NO levels in plant cells relies on the S-nitrosylation of glutathione (GSH), giving rise to S-nitrosoglutathione (GSNO), which can be either stored or degraded depending on the cellular context. Here, we demonstrate that a strict balance is maintained between NO generation and scavenging during tomato (Solanum lycopersicum) seedling deetiolation. Given the absence of accurate methods in the literature to estimate NO scavenging in planta, we first developed a simple, robust system to continuously monitor the global in vivo NO scavenging by plant tissues. Then, using photomorphogenic tomato mutants, we demonstrated that the light-evoked de-etiolation is associated with a dramatic rise in NO content followed by a progressive increment in NO scavenging capacity of the tissues. Light-driven increments in NO scavenging rates coincided with pronounced rises in S-nitrosothiol content and GSNO reductase (GSNOR) activity, thereby suggesting that GSNO formation and subsequent removal via GSNOR might be key for controlling NO levels during seedling deetiolation. Accordingly, treatments with thiol-blocking compounds further indicated that thiol nitrosylation might be critically involved in the NO scavenging mechanism responsible for maintaining NO homeostasis during deetiolation. The impacts of both light and NO on the transcriptional profile of glutathione metabolic genes also revealed an independent but coordinated action of these signals on the regulation of key components of glutathione and GSNO metabolisms. Altogether, these data indicated that GSNO formation and subsequent removal might facilitate maintaining NO homeostasis during light-driven seedling deetiolation.


Asunto(s)
Etiolado , Homeostasis/efectos de la radiación , Luz , Óxido Nítrico/metabolismo , Plantones/metabolismo , Plantones/efectos de la radiación , Aldehído Oxidorreductasas/metabolismo , Depuradores de Radicales Libres , Glutatión/química , Glutatión/metabolismo , Óxido Nítrico/química , Reacción en Cadena de la Polimerasa , Plantones/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA