RESUMEN
Lysinibacillus sphaericus is a bacterium that, along with Bacillus thuringiensis var. israelensis, is considered the best biological insecticide for controlling mosquito larvae and an eco-friendly alternative to chemical insecticides. It depends on peptidic molecules such as N-acetylglucosamine to obtain carbon sources and possesses a phosphotransferase system (PTS) for their incorporation. Some strains carry S-layer proteins, whose involvement in metal retention and larvicidal activity against disease-carrying mosquitoes has been demonstrated. Alterations in the amino sugar incorporation system could affect the protein profile and functionality. Strain ASB13052 and the isogenic mutant in the ptsH gene, which is predominant in the PTS signaling pathway, were used in this study. For the first time, the presence of N-glycosylated S-layer proteins was confirmed in both strains, with a variation in their molecular weight pattern depending on the growth phase. In the exponential phase, an S-layer protein greater than 130 kDa was found in the ptsH mutant, which was absent in the wild-type strain. The mutant strain exhibited altered and incomplete low quality sporulation processes. Hemolysis analysis, associated with larvicidal activity, showed that the ptsH mutant has higher lytic efficiency, correlating with the high molecular weight protein. The results allow us to propose the potential effects that arise as a result of the absence of amino sugar transport on hemolytic activity, S-layer isoforms, and the role of N-acetylglucosamine in larvicidal activity.
Asunto(s)
Acetilglucosamina , Bacillaceae , Glicoproteínas de Membrana , Esporas Bacterianas , Bacillaceae/genética , Bacillaceae/metabolismo , Acetilglucosamina/metabolismo , Esporas Bacterianas/efectos de los fármacos , Esporas Bacterianas/crecimiento & desarrollo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Hemólisis/efectos de los fármacos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte BiológicoRESUMEN
Introduction: The S-layer proteins are a class of self-assembling proteins that form bi-dimensional lattices named S-Layer on the cell surface of bacteria and archaea. The protein SlpA, which is the major constituent of the Lactobacillus acidophilus S-layer, contains in its C-terminus region (SlpA284 - 444), a protein domain (named here as SLAPTAG) responsible for the association of SlpA to the bacterial surface. SLAPTAG was adapted for the development of a novel affinity chromatography method: the SLAPTAG-based affinity chromatography (SAC). Methods: Proteins with different molecular weights or biochemical functions were fused in-frame to the SLAPTAG and efficiently purified by a Bacillus subtilis-derived affinity matrix (named Bio-Matrix or BM). Different binding and elution conditions were evaluated to establish an optimized protocol. Results: The binding equilibrium between SLAPTAG and BM was reached after a few minutes of incubation at 4°C, with an apparent dissociation constant (KD) of 4.3µM. A reporter protein (H6-GFP-SLAPTAG) was used to compare SAC protein purification efficiency against commercial immobilized metal affinity chromatography. No differences in protein purification performance were observed between the two methods. The stability and reusability of the BM were evaluated, and it was found that the matrix remained stable for more than a year. BM could be reused up to five times without a significant loss in performance. Additionally, the recovery of bound SLAP-tagged proteins was explored using proteolysis with a SLAP-tagged version of the HRV-3c protease (SLAPASE). This released the untagged GFP while the cut SLAPTAG and the SLAPASE were retained in the BM. As an alternative, iron nanoparticles were linked to the BM, resulting in BMmag. The BMmag was successfully adapted for a magnetic SAC, a technique with potential applications in high-throughput protein production and purification. Discussion: The SAC protocol can be adapted as a universal tool for the purification of recombinant proteins. Furthermore, the SAC protocol utilizes simple and low-cost reagents, making it suitable for in-house protein purification systems in laboratories worldwide. This enables the production of pure recombinant proteins for research, diagnosis, and the food industry.
RESUMEN
In bacteria, as in other microorganisms, surface compounds interact with different pattern recognition receptors expressed by host cells, which usually triggers a variety of cellular responses that result in immunomodulation. The S-layer is a two-dimensional macromolecular crystalline structure formed by (glyco)-protein subunits that covers the surface of many species of Bacteria and almost all Archaea. In Bacteria, the presence of S-layer has been described in both pathogenic and non-pathogenic strains. As surface components, special attention deserves the role that S-layer proteins (SLPs) play in the interaction of bacterial cells with humoral and cellular components of the immune system. In this sense, some differences can be predicted between pathogenic and non-pathogenic bacteria. In the first group, the S-layer constitutes an important virulence factor, which in turn makes it a potential therapeutic target. For the other group, the growing interest to understand the mechanisms of action of commensal microbiota and probiotic strains has prompted the studies of the role of the S-layer in the interaction between the host immune cells and bacteria bearing this surface structure. In this review, we aim to summarize the main latest reports and the perspectives of bacterial SLPs as immune players, focusing on those from pathogenic and commensal/probiotic most studied species.
RESUMEN
(1) Background: Haloarchaea comprise extremely halophilic organisms of the Archaea domain. They are single-cell organisms with distinctive membrane lipids and a protein-based cell wall or surface layer (S-layer) formed by a glycoprotein array. Pleolipoviruses, which infect haloarchaeal cells, have an envelope analogous to eukaryotic enveloped viruses. One such member, Halorubrum pleomorphic virus 6 (HRPV-6), has been shown to enter host cells through virus-cell membrane fusion. The HRPV-6 fusion activity was attributed to its VP4-like spike protein, but the physiological trigger required to induce membrane fusion remains yet unknown. (2) Methods: We used SDS-PAGE mass spectroscopy to characterize the S-layer extract, established a proteoliposome system, and used R18-fluorescence dequenching to measure membrane fusion. (3) Results: We show that the S-layer extraction by Mg2+ chelating from the HRPV-6 host, Halorubrum sp. SS7-4, abrogates HRPV-6 membrane fusion. When we in turn reconstituted the S-layer extract from Hrr. sp. SS7-4 onto liposomes in the presence of Mg2+, HRPV-6 membrane fusion with the proteoliposomes could be readily observed. This was not the case with liposomes alone or with proteoliposomes carrying the S-layer extract from other haloarchaea, such as Haloferax volcanii. (4) Conclusions: The S-layer extract from the host, Hrr. sp. SS7-4, corresponds to the physiological fusion trigger of HRPV-6.
Asunto(s)
Proteínas Arqueales/metabolismo , Virus de Archaea/fisiología , Halorubrum/virología , Glicoproteínas de Membrana/metabolismo , Internalización del Virus , Virus de Archaea/ultraestructura , Halorubrum/ultraestructura , Interacciones Microbiota-Huesped , Fusión de Membrana , Proteolípidos/metabolismoRESUMEN
S-layers are bacterial structures present on the surface of several Gram-positive and Gram-negative bacteria that play a role in bacterial protection. In Lactobacillus acidophilus (L. acidophilus ATCC 4356), the S-layer is mainly composed of the protein SlpA. A tandem of two copies of the protein domain SLP-A (pfam: 03217) was identified at the C-terminal of SlpA, being this double SLP-A protein domain (in short dSLP-A) necessary and sufficient for the association of the protein to the L. acidophilus cell wall. A variety of proteins fused to the dSLP-A domain were able to spontaneously associate with high affinity to the cell wall of L. acidophilus and Bacillus subtilis var. natto, in a process that we termed decoration. Binding of dSLP-A-containing-proteins to L. acidophilus was stable at conditions that mimic the gastrointestinal transit in terms of pH, proteases, and bile salts. To evaluate if protein decoration of L. acidophilus can be adapted to generate an oral vaccine platform, a chimeric antigen derived from the bacterial pathogen Shiga-toxin-producing Escherichia coli (STEC) was constructed by fusing the sequences encoding the polypeptides EspA36-192, Intimin653-953, Tir240-378, and H7 flagellin352-374 (EITH7) to the dSLP-A domain (EITH7-dSLP-A). Recombinantly expressed EITH7-dSLP-A protein was affinity purified and combined with L. acidophilus cultures to allow the association of the chimeric antigen to the bacterial surface. EITH7-decorated L. acidophilus was orally administered to BALB/c mice and the induction of anti-EITH7 specific antibodies in sera and feces determined by ELISA. Mice presenting significantly higher anti-EITH7 antibodies titers were able to control more efficiently an experimental STEC infection than mice that received the non-decorated L. acidophilus carrier, indicating that antigen-decorated L. acidophilus can be adapted as a mucosal immunization delivery platform to elicit a protective immune response for vaccine purposes.
RESUMEN
Glyphosate and glyphosate-based herbicides are among the most used chemicals in plant pest control. Both glyphosate and its main by-product Aminomethylphosphonic Acid (AMPA) are highly environmentally persistent and, through several processes (including surface runoff and bioaccumulation), affect species beyond their intended targets, especially in aquatic ecosystems. Aedes albopictus is a novel invasive arboviral vector in Colombia and has spread to much of the national territory in recent years. Strains of the bacterium Lysinibacillus sphaericus have shown the ability to degrade glyphosate into environmentally inert compounds, in addition to having great larvicidal efficiency in different mosquito species through the production of several proteins, including the surface layer (S-Layer) protein. The S-Layer is a bacterial structure consisting of glycoprotein monomers, and its functions are thought to include bacterial interactions, protection from the outside medium and biological control. The study assessed the entomopathogenic activity of L. sphaericus S-Layer protein on Ae. albopictus larvae, and the effects that glyphosate and its by-products have in this process. To that end, bioassays were performed to compare the larval mortality between different treatments with and without S-Layer, glyphosate, and glyphosate derivates. Comparisons were made through Analysis of variance (ANOVA) and Tukey's Honestly Significant Difference (HSD) analyses. Significant differences were found in larval mortality in the treatments, and larval mortality was greater when the S-Layer protein was present, though glyphosate field-doses (1.69 g/L) alone had a notable toxicity as well. An apparent synergic effect on the mortality of larval Ae. albopictus when exposed to mixtures containing 1500 ppm of the S-Layer protein, glyphosate, and/or glyphosate derivates was found. Further studies are needed for the in-depth understanding of this mechanism and its consequences on aquatic ecosystems.
RESUMEN
Research on nanoparticles obtained on biological supports is a topic of growing interest in nanoscience, especially regarding catalytic applications. Silver nanoparticles (AgNPs) have been studied due to their low toxicity, but they tend to aggregation, oxidation, and low stability. In this work, we synthesized and characterized AgNPs supported on S-layer proteins (SLPs) as bidimensional regularly arranged biotemplates. By different reduction strategies, six AgNPs of variable sizes were obtained on two different SLPs. Transmission electron microscopy (TEM) images showed that SLPs are mostly decorated by evenly distributed AgNPs; however, a drastic reduction by NaBH4 led to large AgNPs whereas a smooth reduction with H2 or H2/NaBH4 at low concentration leads to smaller AgNPs, regardless of the SLP used as support. All the nanosystems showed conversion values between 75-80% of p-nitrophenol to p-aminophenol, however, the increment in the AgNPs size led to a great decrease in Kapp showing the influence of reduction strategy in the performance of the catalysts. Density functional theory (DFT) calculations indicated that the adsorption of p-nitrophenolate species through the nitro group is the most favored mechanism, leading to p-aminophenol as the only feasible product of the reaction, which was corroborated experimentally.
RESUMEN
S-layer (glyco)-proteins (SLPs) form a nanostructured envelope that covers the surface of different prokaryotes and show immunomodulatory activity. Previously, we have demonstrated that the S-layer glycoprotein from probiotic Lactobacillus kefiri CIDCA 8348 (SLP-8348) is recognized by Mincle (macrophage inducible C-type lectin receptor), and its adjuvanticity depends on the integrity of its glycans. However, the glycan's structure has not been described so far. Herein, we analyze the glycosylation pattern of three SLPs, SLP-8348, SLP-8321, and SLP-5818, and explore how these patterns impact their recognition by C-type lectin receptors and the immunomodulatory effect of the L. kefiri SLPs on antigen-presenting cells. High-performance anion-exchange chromatography-pulse amperometric detector performed after ß-elimination showed glucose as the major component in the O-glycans of the three SLPs; however, some differences in the length of hexose chains were observed. No N-glycosylation signals were detected in SLP-8348 and SLP-8321, but SLP-5818 was observed to have two sites carrying complex N-glycans based on a site-specific analysis and a glycomic workflow of the permethylated glycans. SLP-8348 was previously shown to enhance LPS-induced activation on both RAW264.7 macrophages and murine bone marrow-derived dendritic cells; we now show that SLP-8321 and SLP-5818 have a similar effect regardless of the differences in their glycosylation patterns. Studies performed with bone marrow-derived dendritic cells from C-type lectin receptor-deficient mice revealed that the immunostimulatory activity of SLP-8321 depends on its recognition by Mincle, whereas SLP-5818's effects are dependent on SignR3 (murine ortholog of human DC-SIGN). These findings encourage further investigation of both the potential application of these SLPs as new adjuvants and the protein glycosylation mechanisms in these bacteria.
Asunto(s)
Antígenos CD/metabolismo , Lactobacillus/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos CD/genética , Cromatografía Líquida de Alta Presión , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Glicopéptidos/análisis , Glicopéptidos/química , Glicosilación , Inmunización , Interferón gamma/metabolismo , Lectinas Tipo C/deficiencia , Lectinas Tipo C/genética , Lipopolisacáridos/farmacología , Glicoproteínas de Membrana/química , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Polisacáridos/análisis , Polisacáridos/química , Células RAW 264.7 , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
Bacillus thuringiensis (Bt) is a ubiquitous bacterium in soils, insect cadavers, phylloplane, water, and stored grain, that produces several proteins, each one toxic to different biological targets such as insects, nematodes, mites, protozoa, and mammalian cells. Most Bt toxins identify their particular target through the recognition of specific cell membrane receptors. Cry proteins are the best-known toxins from Bt and a great amount of research has been published. Cry are cytotoxic to insect larvae that affect important crops recognizing specific cell membrane receptors such as cadherin, aminopeptidase-N, and alkaline phosphatase. Furthermore, some Cry toxins such as Cry4A, Cry4B, and Cry11A act synergistically with Cyt toxins against dipteran larvae vectors of human disease. Research developed with Cry proteins revealed that these toxins also could kill human cancer cells through the interaction with specific receptors. Parasporins are a small group of patented toxins that may or may not have insecticidal activity. These proteins could kill a wide variety of mammalian cancer cells by recognizing specific membrane receptors, just like Cry toxins do. Surface layer proteins (SLP), unlike the other proteins produced by Bt, are also produced by most bacteria and archaebacteria. It was recently demonstrated that SLP produced by Bt could interact with membrane receptors of insect and human cancer cells to kill them. Cyt toxins have a structure that is mostly unrelated to Cry toxins; thereby, other mechanisms of action have been reported to them. These toxins affect mainly mosquitoes that are vectors of human diseases like Anopheles spp (malaria), Aedes spp (dengue, zika, and chikungunya), and Culex spp (Nile fever and Rift Valley fever), respectively. In addition to the Cry, Cyt, and parasporins toxins produced during spore formation as inclusion bodies, Bt strains also produce Vip (Vegetative insecticidal toxins) and Sip (Secreted insecticidal proteins) toxins with insecticidal activity during their vegetative growth phase.
Asunto(s)
Antineoplásicos/farmacología , Toxinas de Bacillus thuringiensis/farmacología , Endotoxinas/farmacología , Proteínas Hemolisinas/farmacología , Insecticidas/farmacología , Neoplasias/tratamiento farmacológico , Animales , Proteínas Bacterianas/farmacología , Línea Celular Tumoral , Humanos , Glicoproteínas de Membrana/farmacología , Neoplasias/metabolismo , Neoplasias/patología , Transducción de SeñalRESUMEN
Bacillus sp. strain QHF158, a Gram-positive, spore-forming and parasporal crystal-secreting bacterium, was isolated from soil of Limushan National Forest Park in China. Here we present the significant feature of parasporal inclusions of this organism, together with the draft genome sequence and annotation. Phylogenetic analysis suggested that strain QHF158 is possibly a novel species, most closely related to Bacillus mycoides. Genome annotation results revealed that strain QHF158 did not contain any typical Cry or Cyt toxin coding gene. Furthermore, the mass spectrometry analyses demonstrated that the parasporal crystalline inclusions were encoded by the orf_05273 gene, with 95% similarity to the S-layer protein (SLP) EA1 of B. mycoides, which indicated that the parasporal crystal from Bacillus sp. strain QHF158 was mainly formed by SLP, instead of the typical Cry or Cyt toxin proteins.
Asunto(s)
Bacillus/genética , Genoma Bacteriano , Cuerpos de Inclusión/metabolismo , Glicoproteínas de Membrana/metabolismo , Bacillus/clasificación , Bacillus/aislamiento & purificación , Bacillus/metabolismo , Cuerpos de Inclusión/genética , Glicoproteínas de Membrana/genética , Filogenia , Microbiología del SueloRESUMEN
The development of new subunit vaccines has promoted the rational design of adjuvants able to induce a strong T-cell activation by targeting specific immune receptors. The S-layer is a (glyco)-proteinaceous envelope constituted by subunits that self-assemble to form a two-dimensional lattice that covers the surface of different species of Bacteria and Archaea. Due to their ability to self-assemble in solution, they are attractive tools to be used as antigen/hapten carriers or adjuvants. Recently, we have demonstrated that S-layer glycoprotein from Lactobacillus kefiri CIDCA 8348 (SLP-8348) enhanced the LPS-induced response on macrophages in a Ca2+-dependent manner, but the receptors involved in these immunomodulatory properties remain unknown. Therefore, we aim to determine the C-type lectin receptors (CLRs) recognizing this bacterial surface glycoprotein as well as to investigate the role of glycans in both the immunogenicity and adjuvant capacity of SLP-8348. Here, using a mild periodate oxidation protocol, we showed that loss of SLP-8348 glycan integrity impairs the cell-mediated immune response against the protein. Moreover, our data indicate that the adjuvant capacity of SLP-8348 is also dependent of the biological activity of the SLP-8348 glycans. In order to evaluate the CLRs involved in the interaction with SLP-8348 an ELISA-based method using CLR-hFc fusion proteins showed that SLP-8348 interacts with different CLRs such as Mincle, SingR3, and hDC-SIGN. Using BMDCs derived from CLR-deficient mice, we show that SLP-8348 uptake is dependent of Mincle. Furthermore, we demonstrate that the SLP-8348-induced activation of BMDCs as well as its adjuvant capacity relies on the presence of Mincle and its signaling adaptor CARD9 on BMDCs, since SLP-8348-activated BMDCs from Mincle-/- or CARD9-/- mice were not capable to enhance OVA-specific response in CD4+ T cells purified from OT-II mice. These findings significantly contribute to the understanding of the role of glycans in the immunomodulation elicited by bacterial SLPs and generate a great opportunity in the search for new adjuvants derived from non-pathogenic microorganisms.
Asunto(s)
Factores Inmunológicos/inmunología , Lactobacillus/inmunología , Lectinas Tipo C/inmunología , Glicoproteínas de Membrana/inmunología , Proteínas de la Membrana/inmunología , Animales , Humanos , Factores Inmunológicos/genética , Lactobacillus/genética , Lectinas Tipo C/genética , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Células RAW 264.7RESUMEN
Alphaviruses and flaviviruses are important human pathogens that include Chikungunya virus (CHIKV), Dengue virus (DENV), and Zika virus (ZIKV), which can cause diseases in humans ranging from arthralgia to hemorrhagic fevers and microcephaly. It was previously shown that treatment with surface layer (S-layer) protein, present on the bacterial cell-envelope of Lactobacillus acidophilus, is able to inhibit viral and bacterial infections by blocking the pathogen's interaction with DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN), a trans-membrane protein that is a C-type calcium-dependent lectin. DC-SIGN is known to act as an attachment factor for several viruses including alphaviruses and flaviviruses. In the present study, we used alphaviruses as a model system to dissect the mechanism of S-layer inhibition. We first evaluated the protective effect of S-layer using 3T3 cells, either wild type or stably expressing DC-SIGN, and infecting with the alphaviruses Semliki Forest virus (SFV) and CHIKV and the flaviviruses ZIKV and DENV. DC-SIGN expression significantly enhanced infection by all four viruses. Treatment of the cells with S-layer prior to infection decreased infectivity of all viruses only in cells expressing DC-SIGN. In vitro ELISA experiments showed a direct interaction between S-layer and DC-SIGN; however, confocal microscopy and flow cytometry demonstrated that S-layer binding to the cells was independent of DC-SIGN expression. S-layer protein prevented SFV binding and internalization in DC-SIGN-expressing cells but had no effect on virus binding to DC-SIGN-negative cells. Inhibition of virus binding occurred in a time-dependent manner, with a significant reduction of infection requiring at least a 30-min pre-incubation of S-layer with DC-SIGN-expressing cells. These results suggest that S-layer has a different mechanism of action compared to mannan, a common DC-SIGN-binding compound that has an immediate effect in blocking viral infection. This difference could reflect slower kinetics of S-layer binding to the DC-SIGN present at the plasma membrane (PM). Alternatively, the S-layer/DC-SIGN interaction may trigger the activation of signaling pathways that are required for the inhibition of viral infection. Together our results add important information relevant to the potential use of L. acidophilus S-layer protein as an antiviral therapy.
RESUMEN
The surface layer (S-layer) protein of Lactobacillus acidophilus is a crystalline array of self-assembling, proteinaceous subunits non-covalently bound to the outmost bacterial cell wall envelope and is involved in the adherence of bacteria to host cells. We have previously described that the S-layer protein of L. acidophilus possesses anti-viral and anti-bacterial properties. In this work, we extracted and purified S-layer proteins from L. acidophilus ATCC 4356 cells to study their interaction with cell wall components from prokaryotic (i.e., peptidoglycan and lipoteichoic acids) and eukaryotic origin (i.e., mucin and chitin), as well as with viruses, bacteria, yeast, and blood cells. Using chimeric S-layer fused to green fluorescent protein (GFP) from different parts of the protein, we analyzed their binding capacity. Our results show that the C-terminal part of the S-layer protein presents lectin-like activity, interacting with different glycoepitopes. We further demonstrate that lipoteichoic acid (LTA) serves as an anchor for the S-layer protein. Finally, a structure for the C-terminal part of S-layer and possible binding sites were predicted by a homology-based model.
Asunto(s)
Proteínas Bacterianas/metabolismo , Lactobacillus acidophilus/metabolismo , Lectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Adhesión Bacteriana , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Fluorescentes Verdes/genética , Glicoproteínas de Membrana/aislamiento & purificación , Unión ProteicaRESUMEN
The S-layer is a (glyco)-proteinaceous envelope constituted by self-assembled subunits that form a two-dimensional lattice covering the surface of different species of Bacteria and Archaea. It could be considered as one of the most abundant biopolymers in our planet. Because of their unique self-assembly features, exhibiting repetitive identical physicochemical properties down to the subnanometer scale, as well as their involvement in specific interactions with host cells, the S-layer proteins (SLPs) show a high potential application in different areas of biotechnology, including the development of antigen carriers or new adjuvants. The presence of a glycosylated SLP on potentially probiotic Lactobacillus kefiri strains was previously described by our research group. In this study, we aim to investigate the role of carbohydrates present in the SLP from L. kefiri CIDCA 8348 (SLP-8348) in their internalization by murine macrophages, as well as to analyze their immunomodulatory capacity and their effect on LPS-stimulated macrophages. RAW 264.7 cells internalized the SLP-8348 in a process that was mediated by carbohydrate-receptor interactions since it was inhibited by glucose, mannose or EGTA, a Ca+2 chelating agent. These results correlated with the recognition of SLP-8348 by ConA lectin. We further show that while SLP-8348 was not able to induce the activation of macrophages by itself, it favored the LPS-induced response, since there was a significant increase in the expression of surface cell markers MHC-II, CD86 and CD40, as well as in IL-6 and IL-10 expression at both transcript and protein levels, in comparison with LPS-stimulated cells. The presence of EGTA completely abrogated this synergistic effect. Taken together, these results strongly suggest the involvement of both glycosidic residues and Ca+2 ions in the recognition of SLP-8348 by cellular receptors on murine macrophages. Moreover, these results suggest the potentiality of the SLP-8348 for the development of new adjuvants capable of stimulating antigen presenting cells by interaction with glycan receptors.
Asunto(s)
Calcio/inmunología , Lactobacillus/metabolismo , Lipopolisacáridos/administración & dosificación , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Glicoproteínas de Membrana/administración & dosificación , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/inmunología , Células Cultivadas , Sinergismo Farmacológico , Lactobacillus/clasificación , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Células RAW 264.7RESUMEN
In previous works, it was shown that S-layer proteins from Lactobacillus kefir were able to recrystallize and stabilize liposomes, this feature reveling a great potential for developing liposomal-based carriers. Despite previous studies on this subject are important milestones, a number of questions remain unanswered. In this context, the feasibility of S-layer proteins as a biomaterial for drug delivery was evaluated in this work. First, S-layer proteins were fully characterized by electron microscopy, 2D-electrophoresis, and anionic exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). Afterward, interactions of S-layer proteins with model lipid membranes were evaluated, showing that proteins adsorb to the lipid surface following a non-fickean or anomalous diffusion, when positively charged lipid were employed, suggesting that electrostatic interaction is a key factor in the recrystallization process on these proteins. Finally, the interaction of S-layer coated liposomes with Caco-2 cell line was assessed: First, cytotoxicity of formulations was tested showing no cytotoxic effects in S-layer coated vesicles. Second, by flow cytometry, it was observed an increased ability to transfer cargo molecules into Caco-2 cells from S-layer coated liposomes in comparison to control ones. All data put together, supports the idea that a combination of adhesive properties of S-layer proteins concomitant with higher stability of S-layer coated liposomes represents an exciting starting point in the development of new drug carriers.
Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Lactobacillus/química , Liposomas/química , Glicoproteínas de Membrana/metabolismo , Proteínas Bacterianas/química , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Difusión , Liberación de Fármacos , Humanos , Punto Isoeléctrico , Kéfir , Liposomas/farmacología , Glicoproteínas de Membrana/química , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
Clostridium difficile is a spore-forming anaerobic intestinal pathogen that causes Clostridium difficile infection (CDI). C. difficile is the leading cause of toxin-mediated nosocomial antibiotic-associated diarrhea. The pathogenesis of CDI is attributed to two major virulence factors, TcdA and TcdB toxins, that cause the symptomatic infection. C. difficile also expresses a number of key proteins, including cell wall proteins (CWPs). S-layer proteins (SLPs) are CWPs that form a paracrystalline surface array that coats the surface of the bacterium. SLPs have a role in C. difficile binding to the gastrointestinal tract, but their importance in virulence need to be better elucidated. Here, we describe bottom-up proteomics analysis of surface-enriched proteins fractions obtained through glycine extraction of five C. difficile clinical isolates from Brazil using gel-based and gel-free approaches. We were able to identify approximately 250 proteins for each strain, among them SlpA, Cwp2, Cwp6, CwpV and Cwp84. Identified CWPs presented different amino acid coverage, which might suggest differences in post-translational modifications. Proteomic analysis of SLPs from ribotype 133, agent of C. difficile outbreaks in Brazil, revealed unique proteins and provided additional information towards in depth characterization of the strains causing CDI in Brazil.
Asunto(s)
Proteínas Bacterianas/análisis , Clostridioides difficile/clasificación , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/microbiología , Brotes de Enfermedades , Glicoproteínas de Membrana/análisis , Ribotipificación , Brasil/epidemiología , Clostridioides difficile/genética , Clostridioides difficile/aislamiento & purificación , Humanos , ProteómicaRESUMEN
In contrast to bacteria, all archaea possess cell walls lacking peptidoglycan and a number of different cell envelope components have also been described. A paracrystalline protein surface layer, commonly referred to as S-layer, is present in nearly all archaea described to date. S-layers are composed of only one or two proteins and form different lattice structures. In this review, we summarize current understanding of archaeal S-layer proteins, discussing topics such as structure, lattice type distribution among archaeal phyla and glycosylation. The hexagonal lattice type is dominant within the phylum Euryarchaeota, while in the Crenarchaeota this feature is mainly associated with specific orders. S-layers exclusive to the Crenarchaeota have also been described, which are composed of two proteins. Information regarding S-layers in the remaining archaeal phyla is limited, mainly due to organism description through only culture-independent methods. Despite the numerous applied studies using bacterial S-layers, few reports have employed archaea as a study model. As such, archaeal S-layers represent an area for exploration in both basic and applied research.
RESUMEN
The S-layer is a proteinaceous envelope constituted by subunits that self-assemble to form a two-dimensional lattice that covers the surface of different species of Bacteria and Archaea, and it could be involved in cell recognition of microbes among other several distinct functions. In this work, both proteomic and genomic approaches were used to gain knowledge about the sequences of the S-layer protein (SLPs) encoding genes expressed by six aggregative and sixteen non-aggregative strains of potentially probiotic Lactobacillus kefiri. Peptide mass fingerprint (PMF) analysis confirmed the identity of SLPs extracted from L. kefiri, and based on the homology with phylogenetically related species, primers located outside and inside the SLP-genes were employed to amplify genomic DNA. The O-glycosylation site SASSAS was found in all L. kefiri SLPs. Ten strains were selected for sequencing of the complete genes. The total length of the mature proteins varies from 492 to 576 amino acids, and all SLPs have a calculated pI between 9.37 and 9.60. The N-terminal region is relatively conserved and shows a high percentage of positively charged amino acids. Major differences among strains are found in the C-terminal region. Different groups could be distinguished regarding the mature SLPs and the similarities observed in the PMF spectra. Interestingly, SLPs of the aggregative strains are 100% homologous, although these strains were isolated from different kefir grains. This knowledge provides relevant data for better understanding of the mechanisms involved in SLPs functionality and could contribute to the development of products of biotechnological interest from potentially probiotic bacteria.
Asunto(s)
Proteínas Bacterianas/genética , Genoma Bacteriano/genética , Kéfir/microbiología , Lactobacillus/metabolismo , Glicoproteínas de Membrana/genética , Secuencia de Aminoácidos , ADN Bacteriano/genética , Probióticos , ProteómicaRESUMEN
In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity.
Asunto(s)
Expresión Génica , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/metabolismo , Glicoproteínas de Membrana/metabolismo , Presión Osmótica , Lactobacillus acidophilus/efectos de los fármacos , Cloruro de Sodio/metabolismoRESUMEN
S-layers are paracrystalline bidimensional arrays of proteins or glycoproteins that overlay the cell surface of several genus and species of bacteria and archaea. As the outermost layer of several genus and species of microorganisms, S-layer proteins (SLP) are in direct contact with bacterial environment and thus may be involved in many of their surface properties, including adherence to various substrates, mucins and eukaryotic cells, aggregation and coaggregation with yeasts and other bacteria. In addition, SLP have been reported to be responsible for the bacterial protection against detrimental environmental conditions and to play an important role in surface recognition or as carriers of virulence factors. In this mini-review, we bring together the latest evidences about functional and mechanical properties of bacterial SLP from two different perspectives: (A) their role on bacterial adherence to different substrates and surfaces, and (B) their role as mechanical barriers in bacterial harmful environments.