Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.127
Filtrar
1.
Food Chem ; 463(Pt 2): 141245, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39298849

RESUMEN

This study presents the first successful generation of polyclonal antibodies (pAbs) and oligonucleotide aptamers specifically targeting fusaric acid (FA). Utilizing these pAbs and aptamers, three highly sensitive and specific assays were developed for the detection of FA in cereals with limits of detection (LOD) ranging from 5 to 50 ng/g: an antibody-based enzyme-linked immunosorbent assay (ELISA), an aptamer-based enzyme-linked aptamer-sorbent assay (ELASA), and a hybrid enzyme-linked aptamer-antibody sandwich assay (ELAAA). The recovery rates of FA in spiked cereal samples ranged from 87 % to 112 % across all assays. Analysis of 15 cereal feed samples revealed FA contamination levels of 459 to 1743 ng/g (ELISA), 427 to 1960 ng/g (ELASA), and 381 to 1987 ng/g (ELAAA). These results were further validated by HPLC analysis, confirming high consistency within developed assays. Overall, the ELISA, ELASA, and ELAAA are promising tools for the rapid detection of FA, significantly contributing to food safety monitoring.

2.
Regul Toxicol Pharmacol ; 153: 105708, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39304112

RESUMEN

Botanical supplements and herbal products are widely used by consumers for various purported health benefits, and their popularity is increasing. Some of these natural products can have adverse effects on liver function and/or interact with prescription and over-the-counter (OTC) medications. Ensuring the safety of these readily available products is a crucial public health concern; however, not all regulatory authorities require premarket safety review and/or testing. To address and discuss these and other emerging needs related to botanical safety, a symposium was held at the Society of Toxicology Annual Meeting in Salt Lake City (UT) on March 11, 2024. The symposium addressed the latest research on botanical-induced liver toxicity and botanical-drug interactions, including new approach methods to screen for toxicity, challenges in assessing the safety of botanicals, and relating human adverse events to specific products. The presentations and robust panel discussion between the speakers and audience highlighted the need for further research and collaboration to improve the safety of botanical supplements and herbal products, with the ultimate goal of protecting consumer health. Although utility of many of the modern tools presented in the symposium requires further study, the synergistic efforts of diverse experts hold promise for effective prediction and evaluation of botanical-induced hepatotoxicity and botanical-drug interaction potential.

3.
Talanta ; 281: 126842, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39305759

RESUMEN

Chikungunya fever, caused by Chikungunya virus (CHIKV) exhibits clinical features that mimic that of other arbovirus infections such as dengue. CHIKV Envelope 2 (E2) protein, an antigenic epitope of CHIKV, has been identified as an ideal marker for diagnostics. The current CHIKV antigen detection tests are largely based on antibodies but are beleaguered by issues such as sensitivity to high temperature, expensive and prone to batch-to-batch variations. Aptamers are suitable alternatives to antibodies as they are cheaper and have no batch-to-batch variations compared to antibodies. In this study, DNA aptamer selection against CHIKV E2 proteins was performed using two different randomized ssDNA libraries. Chik-2 (96-mer) and Chik-3 (76-mer) were isolated from these two libraries and were identified as the potential aptamers against CHIKV E2 protein. The binding affinity of Chik-2 and Chik-3 against CHIKV E2 protein was estimated at 177.5 ± 32.69 nM and 30.01 ± 3.60 nM, respectively. A sandwich ELASA was developed, and this assay showed a detection limit of 2.17 x 103 PFU/mL. The sensitivity and specificity of the assay were 80 % and 100 %, respectively. The assay showed no cross-reactivity with dengue-positive samples, demonstrating the enormous diagnostic potential of these aptamers for the detection of CHIKV.

4.
Sci Rep ; 14(1): 21689, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289400

RESUMEN

The present paper introduces the development of dynamic stiffness method for analyzing small-scale sandwich functionally graded nanoplates resting on elastic foundation in thermal environments. The mathematical formulation is based on classical plate theory in conjunction with nonlocal elasticity theory. The governing equation is derived using Hamilton's principle. The dynamic stiffness matrix is obtained through the application of the Levy displacement approach and assembled to form the global stiffness matrix. The final matrix is solved for natural frequency of the plates using the Wittrick-Williams algorithm. The proposed methodology is validated against existing literature, demonstrating a strong agreement. Various parametric studies explore the effects of thermal environments, volume fraction index, sandwich configurations, elastic foundation characteristics, nonlocal parameter and boundary conditions. The results show the versatility of the proposed approach in addressing small scaled complex engineering structures. This research significantly contributes to the understanding and analysis of sandwich functionally graded nanoplates, providing valuable insights for applications in aerospace, structural systems, sensors, actuators, and energy harvesting devices.

5.
J Colloid Interface Sci ; 678(Pt B): 497-505, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39260298

RESUMEN

Aqueous zinc-ion batteries are attracting extensive attention due to the long-term service life and credible safety as well as the superior price performance between the low cost of manufacture and high energy density. The fabrication of inexpensive, high-performance flexible solid-state zinc-ion batteries, thus, are urgently need for the blooming wearable electronics. Herein, as a proof-of-concept study of waste into wealth, cellulose flakes derived from waste pomelo peel are utilized as the substrate for electrodes and hydrogel electrolytes into a flexible rocking-chair zinc-ion battery. The unique sandwich-type structure holding the flake-like cellulose substrate and linear carbon nanotubes endows the flexible cathode and anode with fast ion and electron transportation. The obtained cellulose-based hydrogel electrolytes on account of special affinity with aqueous ZnSO4 electrolyte output an excellent ionic conductivity. The assembled flexible rocking-chair zinc-ion battery benefitting from the synergistic effect of sandwich-type electrodes and cellulose-based hydrogel electrolytes demonstrates outstanding electrochemical performance and mechanical properties. This work not only puts up an effective roadmap for flexible battery devices, but also reveals the great potential of waste biomass materials in energy storage applications.

6.
Mikrochim Acta ; 191(10): 589, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256238

RESUMEN

Rapid and reliable detection method for African swine fever virus (ASFV) is proposed by surface-enhanced Raman spectroscopy (SERS). The ASFV target DNA can be specifically captured by sandwich hybridization between nanomagnetic beads and a SERS probe. Experimental results show that the significant Raman signal of the SERS probe with gold nanoparticles and a molecular reporter DTNB (5,5'-dimercapto-bis (2-nitrobenzoic acid)) can be adopted for detecting the hybridization chain reaction of ASFV DNA. The advantage of the SERS sandwich hybridization assay is the large response range from the single molecule level to 108 copies per mL, which not only can overcome the tedious time required for the amplification reaction but also provides a comparative method to polymerase chain reaction. Furthermore, real samples of African swine fever virus were detected from different subjects of swine fever virus including porcine reproductive respiratory syndrome virus and Japanese encephalitis virus. The proposed biosensor method can rapidly detect ASFV correctly within 15 min as a simple, convenient, low-cost detection approach. The biosensor can be used as a platform for the determination in biological, food, and environmental analytical fields.


Asunto(s)
Virus de la Fiebre Porcina Africana , Oro , Nanopartículas del Metal , Hibridación de Ácido Nucleico , Espectrometría Raman , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Virus de la Fiebre Porcina Africana/genética , Espectrometría Raman/métodos , Nanopartículas del Metal/química , Animales , Oro/química , Técnicas Biosensibles/métodos , Porcinos , ADN Viral/análisis , ADN Viral/genética , Límite de Detección , Fiebre Porcina Africana/diagnóstico , Fiebre Porcina Africana/virología
7.
Chem Asian J ; : e202400959, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251401

RESUMEN

The synthesis of supramolecular compounds with a high degree of controllability and the targeted modulation of their topological transitions pose significant challenges in situ. In this study, we have successfully constructed an array of discrete structures based on a series of bidentate pyridyl ligands (L1, L2, and L3), which were subsequently ligated with half-sandwiched (Cp*Ir fragments) building blocks. Our further investigations elucidate a strategy for coordinating the relative lengths of the bidentate ligands with the building blocks, achieving specific concentrations that drive the transformation of tetranuclear metal macrocycles into Borromean rings. Notably, the distinct characteristics of the three pyridyl ligands markedly influence the efficiency of synthesis and the topological conversion of the supramolecular macrocycles. Detailed structural analyses reveal that π-π stacking interactions, the electron-donating capabilities of the ligands, and hydrogen-bonding interactions are pivotal in stabilizing these molecular macrocycles and in facilitating their transformation to Borromean rings. The analyses underscore the importance of the electron-rich effect induced by the sulfur atoms in the ligands and the regulation and modulation of the pyridine functional group in contributing to the structural stability and altered characteristics of the macrocycles.

8.
Microbiol Immunol ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287179

RESUMEN

The COVID-19 pandemic, driven by the SARS-CoV-2 virus, has posed a severe threat to global public health. Rapid, reliable, and easy-to-use detection methods for SARS-CoV-2 variants are critical for effective epidemic prevention and control. The N protein of SARS-CoV-2 serves as an ideal target for antigen detection. In this study, we achieved soluble expression of the recombinant SARS-CoV-2 N protein using an Escherichia coli expression system and generated specific monoclonal antibodies by immunizing BALB/c mice. We successfully developed 10 monoclonal antibodies against the N protein, designated 5B7, 5F2-C11, 5E2-E8, 6C3-D8, 7C8, 9F2-E9, 12H5-D11, 13G2-C10, 14E9-F6, and 15H3-E10. Using these antibodies, we established a sandwich ELISA with 6C3-D8 as the capture antibody and 5F2-C11 as the detection antibody. The assay demonstrated a sensitivity of 0.78 ng/mL and showed no cross-reactivity with MERS-CoV, HCoV-OC43, HCoV-NL63, and HCoV-229E. Furthermore, this method successfully detected both wild-type SARS-CoV-2 and its variants, including Alpha, Beta, Delta, and Omicron. These findings indicate that our sandwich ELISA exhibits excellent sensitivity, specificity, and broad-spectrum applicability, providing a robust tool for detecting SARS-CoV-2 variants.

9.
Front Cell Infect Microbiol ; 14: 1455259, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228894

RESUMEN

Introduction: Tularemia, caused by the bacterium Francisella tularensis, poses health risks to humans and can spread through a variety of routes. It has also been classified as a Tier 1 Select agent by the CDC, highlighting its potential as a bioterrorism agent. Moreover, it is difficult to diagnose in a timely fashion, owing to the non-specific nature of tularemia infections. Rapid, sensitive, and accurate detection methods are required to reduce mortality rates. We aimed to develop antibodies directed against the outer membrane protein A of F. tularensis (FopA) for rapid and accurate diagnosis of tularemia. Methods: We used a baculovirus insect cell expression vector system to produce the FopA antigen and generate anti-FopA antibodies through immunization of BALB/c mice. We then employed hybridoma and phage display technologies to screen for antibodies that could recognize unique epitopes on FopA. Result: Two monoclonal antibodies, 6B12 and 3C1, identified through phage display screening specifically bound to recombinant FopA in a dose-dependent manner. The binding affinity of the anti-FopA 6B12 and 3C1 antibodies was observed to have an equilibrium dissociation constant of 1.76 × 10-10 M and 1.32 × 10-9 M, respectively. These antibodies were used to develop a sandwich ELISA system for the diagnosis of tularemia. This assay was found to be highly specific and sensitive, with detection limits ranging from 0.062 ng/mL in PBS to 0.064 ng/mL in skim milk matrices. Discussion: Our findings demonstrate the feasibility of a novel diagnostic approach for detecting F. tularensis based on targeting FopA, as opposed to existing tests that target the bacterial lipopolysaccharide.


Asunto(s)
Anticuerpos Antibacterianos , Anticuerpos Monoclonales , Proteínas de la Membrana Bacteriana Externa , Francisella tularensis , Ratones Endogámicos BALB C , Proteínas Recombinantes , Tularemia , Tularemia/diagnóstico , Animales , Francisella tularensis/inmunología , Francisella tularensis/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Anticuerpos Monoclonales/inmunología , Ratones , Inmunoensayo/métodos , Sensibilidad y Especificidad , Femenino , Técnicas de Visualización de Superficie Celular , Epítopos/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Hibridomas , Baculoviridae/genética
10.
Polymers (Basel) ; 16(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39274130

RESUMEN

Since carbon fibre composite sandwich structures have high specific strength and specific modulus, which can meet the requirements for the development of aircraft technology, more and more extensive attention has been paid to their residual mechanical properties after subjecting them to fatigue loading in hygrothermal environments. In this paper, the compression and shear characteristics of carbon fibre-reinforced epoxy composite honeycomb sandwich wall panels after fatigue in hygrothermal environments are investigated through experiments. The experimental results show that under compressive loading, the load required for the buckling of composite honeycomb sandwich wall panels after fatigue loading in hygrothermal environments decreases by 25.9% and the damage load decreases by 10.5% compared to those at room temperature. Under shear loading, the load required for buckling to occur is reduced by 26.2% and the breaking load by 12.2% compared to those at room temperature.

11.
Sci Prog ; 107(3): 368504241274998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39252493

RESUMEN

OBJECTIVE: To evaluate the mid-term outcomes of different treatment strategies for the internal iliac artery (IIA) during EVAR. METHODS: This was a retrospective study. All patients undergoing EVAR, who required treatment of at least one side of IIA from January 2013 to July 2022 in a single center, were included. According to the different treatment strategies for IIA, the patients were divided into UP (unilateral preservation), BP (bilateral preservation) and BE (bilateral embolization) groups. The primary outcomes included buttock claudication, bowel ischemia and iliac-related reintervention. Then patients who underwent IIA reconstruction were divided into IPG (iliac parallel stent graft) and IBG (iliac branch stent graft) groups according to the reconstruction technique. The primary outcomes included endoleak, iliac branch occlusion and iliac-related reintervention. RESULTS: A total of 237 patients were included, including 167 in the UP group, 9 in the BP group and 61 in the BE group. The mean follow-up time was 39.0 ± 27.7, 50.0 ± 22.1 and 25.8 ± 18.9 months in UP, BP and BE groups, respectively. Thirty cases (12.7%) of buttock claudication occurred, and it was significantly higher in the BE group than the UP group (26.2% vs. 7.8%, p < 0.001). There were no significant differences in the other follow-up outcomes among three groups. The K-M analysis indicated that the patients in the BE group had a lower survival rate than those in the other two groups (p = 0.024). 24 patients underwent IIA reconstruction, including 8 in the IPG group and 16 in the IBG group. The endoleak in the IBG group was significantly lower than that in the IPG group (0% vs. 25.0%, p = 0.041). The iliac-related reintervention, iliac occlusion and mortality were similar between the two groups. CONCLUSION: Overall it is beneficial for patients to preserve at least one side of IIA during EVAR as much as possible. Compared with IPG, IBG might be more applicable for IIA reconstruction.


Asunto(s)
Procedimientos Endovasculares , Arteria Ilíaca , Humanos , Procedimientos Endovasculares/métodos , Procedimientos Endovasculares/efectos adversos , Masculino , Femenino , Anciano , Arteria Ilíaca/cirugía , Estudios Retrospectivos , Resultado del Tratamiento , Stents , Implantación de Prótesis Vascular/efectos adversos , Implantación de Prótesis Vascular/métodos , Anciano de 80 o más Años , Aneurisma de la Aorta Abdominal/cirugía , Aneurisma Ilíaco/cirugía , Endofuga/cirugía , Endofuga/etiología , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Embolización Terapéutica/métodos , Reparación Endovascular de Aneurismas
12.
Mater Today Bio ; 28: 101204, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39221199

RESUMEN

The treatment of internal hemorrhage remains challenging due to the current limited antibacterial capability, hemostatic efficacy, and biocompatibility of hemostatic materials. The TEMPO-oxidized cellulose nanofibers/collagen/chitosan (TCNF/COL/CS) hemostatic aerogel was developed in this work by physically encasing COL in a sandwich structure and electrostatically self-assembling polyanionic TCNF with polycationic CS. In vitro coagulation experiments revealed the favorable procoagulant properties of TCNF/COL/CS along with high adhesion to erythrocytes and platelets. TCNF/COL/CS significantly increased the hemostatic efficacy by 59.8 % and decreased blood loss by 62.2 % in the liver injury model when compared to Surgicel®, the most frequently used hemostatic material. Furthermore, it demonstrated outstanding biodegradability both in vitro and in vivo, and a substantial increase in resistance (96.8 % against E. coli and 95.4 % against S. aureus) compared to TCNF. The significant hemostatic and biodegradable characteristics of TCNF/COL/CS can be ascribed to its interconnected porous structure, increased porosity, and efficient water absorption, along with the synergistic effect of the three constituents. The TCNF/COL/CS aerogel shows significant potential to control internal bleeding. A novel plant-derived nanocellulose composite aerogel has been described here for the first time; it has outstanding antibacterial characteristics, higher biocompatibility, and outstanding hemostatic characteristics in vivo.

13.
J Biomater Appl ; 39(5): 455-465, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39151162

RESUMEN

One of the critical factors that determines the biological properties of scaffolds is their structure. Due to the mechanical and structural discrepancies between the target bone and implants, the poor internal architecture design and difficulty in degradation of conventional bone implants may cause several adverse outcomes. To date, many scaffolds, such as 3-D printed sandwich structures, have been successfully developed for the repair of bone defects; however, the steps of these methods are complex and costly. Hydrogels have emerged as a unique scaffold material for repairing bone defects because of their good biocompatibility and excellent physicochemical properties. However, studies exploring bioinspired hydrogel scaffolds with hierarchical structures are scarce. More efforts are needed to incorporate bioinspired structures into hydrogel scaffolds to achieve optimal osteogenic properties. In this study, we developed a low-cost and easily available hydrogel matrix that mimicked the natural structure of the bone's porous sandwich to promote new bone growth and tissue integration. A comprehensive evaluation was conducted on the microstructure, swelling rate, and mechanical properties of this hydrogel. Furthermore, a 3D finite element analysis was employed to model the structure-property relationship. The results indicate that the sandwich-structured hydrogel is a promising scaffold material for bone injury repair, exhibiting enhanced compressive stress, elastic modulus, energy storage modulus, and superior force transmission.


Asunto(s)
Materiales Biomiméticos , Hidrogeles , Andamios del Tejido , Hidrogeles/química , Andamios del Tejido/química , Materiales Biomiméticos/química , Regeneración Ósea , Ensayo de Materiales , Ingeniería de Tejidos/métodos , Animales , Análisis de Elementos Finitos , Porosidad , Fuerza Compresiva , Osteogénesis/efectos de los fármacos , Módulo de Elasticidad , Materiales Biocompatibles/química , Huesos , Humanos
14.
Materials (Basel) ; 17(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39203151

RESUMEN

A full triangular chiral (Tri-Chi) honeycomb, combining a honeycomb structure with triangular chiral configuration, notably impacts the Poisson's ratio (PR) and stiffness. To assess the random vibration properties of a composite sandwich panel with a Tri-Chi honeycomb core (CSP-TCH), a two-dimensional equivalent Reissner-Mindlin model (2D-ERM) was created using the variational asymptotic method. The precision of the 2D-ERM in free and random vibration analysis was confirmed through numerical simulations employing 3D finite element analysis, encompassing PSD curves and RMS responses. Furthermore, the effects of selecting the model class were quantified through dynamic numerical examples. Modal analysis revealed that the relative error of the first eight natural frequencies predicted by the 2D-ERM consistently remained below 7%, with the modal cloud demonstrating high reliability. The PSD curves and their RMS values closely aligned with 3D finite element results under various boundary conditions, with a maximum error below 5%. Key factors influencing the vibration characteristics included the ligament-rib angle of the core layer and layup modes of the composite facesheets, while the rib-to-ligament thickness ratio and the aspect ratio exert minimal influence. The impact of the ligament-rib angle on the vibration properties primarily stems from the significant shift in the core layer's Poisson's ratio, transitioning from negative to positive. These findings offer a rapid and precise approach for optimizing the vibration design of CSP-TCH.

15.
Materials (Basel) ; 17(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39203245

RESUMEN

The incorporation of viscoelastic layers in laminates can markedly enhance the damped dynamic characteristics. This study focuses on integrating viscoelastic layers into the composite facesheet of the bowtie-shaped honeycomb core composite sandwich panel (BHC-CSP). The homogenization of the damped BHC-CSP is performed by employing the variational asymptotic method. Based on the generalized total energy equation, the energy functional of the representative unit cell of the damped BHC-CSP is asymptotically analyzed. The warping function, derived following the principle of minimum potential energy, provides a basis for obtaining the corresponding Euler-Lagrange equation to ascertain the equivalent elastic properties of the damped BHC-CSP. Utilizing the developed two-dimensional equivalent model, the free-vibration characteristics of the damped BHC-CSP are examined across diverse boundary conditions while delving into the impact of an external viscous damping layer on the natural frequency of the damped BHC-CSP. The results reveal that intensified boundary constraints effectively diminish the effective vibration region of the damped BHC-CSP, thereby enhancing its overall stability. The introduction of a PMI foam layer proves effective in adjusting the stiffness and mass distribution of the damped BHC-CSP. Resonance characteristics are explored through frequency and time-domain analyses, highlighting the pivotal roles of the excitation position and receiver point in influencing the displacement and velocity responses. Although the stiffness is improved by incorporating a PMI foam layer, its effect on the damping performance of the damped BHC-CSP is minimal when compared to the T-SW308 foam layer.

16.
Vaccines (Basel) ; 12(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39204025

RESUMEN

The rise of mRNA as a novel vaccination strategy presents new opportunities to confront global disease. Double-stranded RNA (dsRNA) is an impurity byproduct of the in vitro transcription reaction used to manufacture mRNA that may affect the potency and safety of the mRNA vaccine in patients. Careful quantitation of dsRNA during manufacturing is critical to ensure that residual dsRNA is minimized in purified mRNA drug substances. In this work, we describe the development and implementation of a sandwich Enzyme-Linked Immunosorbent Assay (ELISA) to quantitate nanogram quantities of residual dsRNA contaminants in mRNA process intermediates using readily available commercial reagents. This sandwich ELISA developed in this study follows a standard protocol and can be easily adapted to most research laboratory environments. Additionally, a liquid handler coupled with an automated robotics system was utilized to increase assay throughput, improve precision, and reduce the analyst time requirement. The final automated sandwich ELISA was able to measure <10 ng/mL of dsRNA with a specificity for dsRNA over 2000-fold higher than mRNA, a variability of <15%, and a throughput of 72 samples per day.

17.
Angew Chem Int Ed Engl ; : e202414488, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198216

RESUMEN

Constructing folded molecular structures is emerging as a promising strategy to develop efficient thermally activated delayed fluorescence (TADF) materials. Most folded TADF materials have V-shaped configurations formed by donors and acceptors linked on carbazole or fluorene bridges. In this work, a facile molecular design strategy is proposed for exploring sandwich-structured molecules, and a series of novel and robust TADF materials with regular U-shaped sandwich conformations are constructed by using 11,12-dihydroindolo[2,3-a]carbazole as bridge, xanthone as acceptor, and dibenzothiophene, dibenzofuran, 9-phenylcarbazole and indolo[3,2,1-JK]carbazole as donors. They hold outstanding thermal stability with ultrahigh decomposition temperatures (556-563 oC), and exhibit fast delayed fluorescence and excellent photoluminescence quantum efficiencies (86%-97%). The regular and close stacking of acceptor and donors results in rigidified molecular structures with efficient through-space interaction, which are conducive to suppressing intramolecular motion and reducing reorganized excited-state energy. The organic light-emitting diodes (OLEDs) using them as emitters exhibit excellent electroluminescence performances, with maximum external quantum efficiencies of up to 30.6%, which is a leading value for the OLEDs based on folded TADF emitters. These results demonstrate the proposed strategy of employing 11,12-dihydroindolo[2,3-a]carbazole as bridge for planar donors and acceptors to construct efficient folded TADF materials is applicable.

18.
Anal Biochem ; 695: 115656, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39216635

RESUMEN

Trichomoniasis is the most prevalent curable, non-viral sexually transmitted infection (STI), with an estimated 156 million new infections in 2020. It can potentially result in adverse birth outcomes as well as infertility in men, whilst it also increases the risk of acquiring HIV and contracting other vaginal infections. It is mostly prevalent among women in low-income countries and especially in Africa and the Americas. This STI is caused by Trichomonas vaginalis (TV) and a robust, cost-effective, sensitive, specific and rapid diagnostic test is urgently required. We report the screening of 6 full-length and 4 truncated aptamers previously selected in our group for use in a microplate-based sandwich assay. The combination of dual aptamers comprising a short 14-mer truncated capture aptamer (termed A1_14mer) and a full-length non-truncated reporter aptamer (A6) was elucidated to be the optimum pair for a sensitive sandwich enzyme-linked aptamer assay (ELAA) for the detection of TV achieving a detection limit of 3.02 × 104 TV cells/mL. The results obtained with the A1_14mer-A6 ELAA correlate excellently with wet-mount microscopy for the detection of TV in clinical specimens, cervicovaginal lavages and vaginal swabs, highlighting the potential clinical application of this assay for cost-effective population screening and subsequent prevention of the onset of complications associated with undiagnosed and untreated TV.


Asunto(s)
Aptámeros de Nucleótidos , Trichomonas vaginalis , Trichomonas vaginalis/aislamiento & purificación , Aptámeros de Nucleótidos/química , Humanos , Femenino , Vaginitis por Trichomonas/diagnóstico , Tricomoniasis/diagnóstico , Ensayo de Inmunoadsorción Enzimática/métodos , Límite de Detección
19.
Nano Lett ; 24(35): 11090-11096, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39162307

RESUMEN

In this study, bismuthene was intercalated between bilayer Ti2CTx to induce significant modifications in its electronic and phonon structures, thereby enhancing its thermoelectric properties. First-principles calculations reveal that the insertion of bismuthene transforms the Ti2CO2 system from a semiconductor into a metal and optimizes the thermoelectric properties of bilayer Ti2CO2 by enhancing its power factor and reducing its lattice thermal conductivity. Under the first-principles calculation parameters used in this study, the ZT of the Ti2CO2 system increased from 0.12 to 0.55. Conversely, for metallic bilayer MXenes, the introduction of bismuthene led to a substantial decrease in ZT (from 0.53 to 0.11 in the Ti2C system and from 0.07 to 0.05 in the Ti2CCl2 system). This study investigates the physical mechanisms underlying the enhancement of thermoelectric properties from both electronic and phononic perspectives and provides theoretical insights into the development and application of MXene-based thermoelectric materials.

20.
Ultrasonics ; 144: 107440, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39197257

RESUMEN

Non-contact ultrasonic testing of debonding in honeycomb sandwich structure has been a major challenge in industry. In this study, the air-coupled local defect resonance (LDR) technique with coda wave analysis is proposed for nondestructive testing (NDT) of debonding in honeycomb sandwich structure. Numerical simulations have been conducted to visualize the LDR behavior of debonding in honeycomb sandwich structure by air-coupled excitations, and a decorrelation analysis method is proposed for determining the interval of coda wave from received signals. Results indicate that the start moment of coda wave should be determined as the time corresponding to decorrelation coefficient exceed to 0.2 and the duration is 2.5 ms. Air-coupled LDR scanning experiments were conducted on the honeycomb sandwich specimens with different deboning. Experimental results indicate that the proposed technique is effective for NDT of the debonding in honeycomb sandwich structures. The research provides an efficiency non-contact ultrasonic NDT method for honeycomb sandwich structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA