Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 55(2): 1167-1177, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38557863

RESUMEN

It is essential to evaluate the effects of operating conditions in submerged cultures of filamentous microorganisms. In particular, the impeller type influences the flow pattern, power consumption, and energy dissipation, leading to differences in the hydrodynamic environment that affect the morphology of the microorganism. This work investigated the effect of different impeller types, namely the Rushton turbine (RT-RT) and Elephant Ear impellers in up-pumping (EEUP) and down-pumping (EEDP) modes, on cellular morphology and clavulanic acid (CA) production by Streptomyces clavuligerus in a stirred-tank bioreactor. At 800 rpm and 0.5 vvm, the cultivations performed using RT-RT and EEUP impellers provided higher shear conditions and oxygen transfer rates than those observed with EEDP. These conditions resulted in higher clavulanic acid production using RT-RT (380.7 mg/L) and EEUP (453.3 mg/L) impellers, compared to EEDP (196.6 mg/L). Although the maximum CA concentration exhibited the same order of magnitude for RT-RT and EEUP impellers, the latter presented 40% of the specific power consumption (4.9 kW/m3) compared to the classical RT-RT (12.0 kW/m3). The specific energy for CA production ( E CA ), defined as the energy cost to produce 1 mg of CA, was 3.5 times lower using the EEUP impeller (1.91 kJ/mgCA) when compared to RT-RT (5.91 kJ/mgCA). Besides, the specific energy for O2 transfer ( E O 2 ), the energy required to transfer 1 mmol of O2, was 2.3 times lower comparing the EEUP impeller (3.28 kJ/mmolO2) to RT-RT (7.65 kJ/mmolO2). The results demonstrated the importance of choosing the most suitable impeller configuration in conventional bioreactors to manufacture bioproducts.


Asunto(s)
Reactores Biológicos , Ácido Clavulánico , Streptomyces , Ácido Clavulánico/biosíntesis , Streptomyces/metabolismo , Streptomyces/crecimiento & desarrollo , Reactores Biológicos/microbiología , Fermentación , Antibacterianos/biosíntesis
2.
Entropy (Basel) ; 21(4)2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33267054

RESUMEN

The influence of the impeller type on drop size distribution (DSD) in turbulent liquid-liquid dispersion is considered in this paper. The effects of the application of two impellers, high power number, high shear impeller (six blade Rushton turbine, RT) and three blade low power number, and a high efficiency impeller (HE3) are compared. Large-scale and fine-scale inhomogeneity are taken into account. The flow field and the properties of the turbulence (energy dissipation rate and integral scale of turbulence) in the agitated vessel are determined using the k-ε model. The intermittency of turbulence is taken into account in droplet breakage and coalescence models by using multifractal formalism. The solution of the population balance equation for lean dispersions (when the only breakage takes place) with a dispersed phase of low viscosity (pure system or system containing surfactant), as well as high viscosity, show that at the same power input per unit mass HE3 impeller produces much smaller droplets. In the case of fast coalescence (low dispersed phase viscosity, no surfactant), the model predicts similar droplets generated by both impellers. In the case of a dispersed phase of high viscosity, when the mobility of the drop surface is reduced, HE3 produces slightly smaller droplets.

3.
Data Brief ; 15: 752-756, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29124103

RESUMEN

In this paper, the data assembled concerning the agitation of a Newtonian fluid in a cylindrical vessel is disclosed. The stirred vessel is not provided with baffles and has a flat-bottom. The data presents some information on the characteristics of two impellers: a six-blade Rushton turbine and a six-blade paddle impeller. The flow patterns generated by both impellers are depicted and compared. Also, the power required when changing the impeller rotational speed is given. The data summarized here via three-dimensional calculations of velocities and viscous dissipation in the whole volume of the tank provides additional knowledge for the best choice of impellers for each industrial process.

4.
J Biosci Bioeng ; 123(1): 101-108, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27475924

RESUMEN

A Fullzone (FZ) impeller was used in the first study of the characteristics involved in the fermentation of Aspergillus oryzae. Both the experimental and simulation results of this study revealed novel findings into the positive relationship between the global-axial mixing patterns of a FZ impeller and fermentation efficiency. The mixing results when using the FZ impeller compared with a double Rushton turbine (DRT) impeller indicated that the culture mixed by the FZ resulted in a more homogeneous medium with higher values for oxygen mass transfer, cell growth rate, and alpha amylase activity. The simulation of fluid flow was done in a laminar regime using a two-fluid model. According to the simulation results, the maximum shear stress when using the DRT was higher than that with the FZ at the same power input (Pin). A high degree of local shear stress and the shear rate near the turbine blade of the DRT resulted in cell damage and a reduction in the enzyme activity, biomass, pellet diameter, and dissolved oxygen concentration. Calculations using the Brown equation showed that the maximum and average shear rates during mixing with the FZ impeller were lower than that when using the DRT. Therefore, the use of an FZ impeller, particularly at low Pin, enhanced the cultivation of A. oryzae.


Asunto(s)
Aspergillus oryzae/metabolismo , Reactores Biológicos/microbiología , Fermentación , Biomasa , Inmersión , Modelos Teóricos , Movimiento (Física) , Oxígeno/metabolismo
5.
Data Brief ; 8: 1416-1420, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27699186

RESUMEN

The paper focuses on the data collected from the mixing of shear thinning non-Newtonian fluids in a cylindrical tank by a Rushton turbine. The data presented are obtained by using Computational Fluid Dynamics (CFD) simulation of fluid flow field in the entire tank volume. The CFD validation data for this study is reported in the research article 'Numerical investigation of hydrodynamic behavior of shear thinning fluids in stirred tank' (Khapre and Munshi, 2015) [1]. The tracer injection method is used for the prediction of mixing time and mixing efficiency of a Rushton turbine impeller.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA