Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 325: 121446, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924916

RESUMEN

The soil surface nitrogen balance (SSNB) method is commonly used to assess the nutrient use efficiency (NUE) of agricultural systems and any associated potential environmental impacts. However, the nitrogen flow of wide natural grasslands and other natural areas differ from that of artificial croplands and mown grasslands. In this study, we integrated root growth and the important nutrient resorption process into the SSNB model and used the improved model to clarify the nitrogen (N) flow and balance in the Three Rivers Headwater Region (TRHR)-an area dominated by alpine meadows-from 2012-2019. In the grassland system, the N surplus (ΔN) was 0.274 g m-2 year-1, and root return (BLD) dominated the N input, accounting for 67% of the total input (3.924 g m-2 year-1). N resorption was the main internal N flow in the grassland system (1.079 g m-2 year-1), and 30% of grassland uptake (NUP-grass). The ΔN of the agricultural system was 1.097 g m-2 year-1, which was four times that of the grassland, and chemical fertilizer was the largest input, accounting for 84% of the total input. The NUE in grassland was 93%, which suggests a risk of soil mining and degradation, while that of cropland was 76% and within an ideal range. The ΔN provides a robust measure of river N export, the TRHR was divided into three catchments, and the export coefficient was 16.14%-55.68%. The results of this study show that the improved SSNB model can be applied to a wide range of natural grasslands that have high root biomass and resorption characteristics.


Asunto(s)
Nitrógeno , Suelo , Nitrógeno/análisis , Pradera , Biomasa , Poaceae
2.
Environ Sci Technol ; 56(14): 10530-10542, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35772808

RESUMEN

Terrestrial export of nitrogen is a critical Earth system process, but its global dynamics remain difficult to predict at a high spatiotemporal resolution. Here, we use deep learning (DL) to model daily riverine nitrogen export in response to hydrometeorological and anthropogenic drivers. Long short-term memory (LSTM) models for the daily concentration and flux of dissolved inorganic nitrogen (DIN) were built in a coastal watershed in southeastern China with a typical subtropical monsoon climate. The DL models exhibited excellent accuracy for both DIN concentration and flux, with Nash-Sutcliffe efficiency coefficients (NSEs) up to 0.67 and 0.92, respectively, a performance unlikely to be achieved by generic process-based models with comparable data quality. The flux model ensemble, without retraining, performed well (mean NSE = 0.32-0.84) in seven distinct watersheds in Asia, Europe, and North America, and retraining with multi-watershed data further improved the lowest NSE from 0.32 to 0.68. DL interpretation confirmed that interbasin consistency of riverine nitrogen export exists across different continents, which stems from the similarities in rainfall-runoff relationships. The multi-watershed flux model projects 0.60-12.4% increases in the nitrogen export to oceans from the studied watersheds under a 20% increase in fertilizer consumption, which rises to 6.7-20.1% with a 10% increase in runoff, indicating the synergistic effect of human activities and climate change. The DL-based method represents a successful case of explainable artificial intelligence in environmental science, providing a potential shortcut to a consistent understanding of the global daily-resolution dynamics of riverine nitrogen export under the currently limited data conditions.


Asunto(s)
Nitrógeno , Ríos , Inteligencia Artificial , China , Monitoreo del Ambiente , Fertilizantes , Humanos , Nitrógeno/análisis
3.
Proc Natl Acad Sci U S A ; 119(14): e2119857119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344436

RESUMEN

SignificanceRussian rivers are the predominant source of riverine mercury to the Arctic Ocean, where methylmercury biomagnifies to high levels in food webs. Pollution controls are thought to have decreased late-20th-century mercury loading to Arctic watersheds, but there are no published long-term observations on mercury in Russian rivers. Here, we present a unique hydrochemistry dataset to determine trends in Russian river particulate mercury concentrations and fluxes in recent decades. Using hydrologic and mercury deposition modeling together with multivariate time series analysis, we determine that 70 to 90% declines in particulate mercury fluxes were driven by pollution reductions and sedimentation in reservoirs. Results suggest that Russian rivers likely dominated over all other sources of mercury to the Arctic Ocean until recently.

4.
Environ Pollut ; 294: 118657, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890749

RESUMEN

Salt marsh estuaries serve as sources and sinks for nutrients and elements to and from estuarine water, which enhances and alleviates watershed fluxes to the coastal ocean. We assessed sources and sinks of mercury in the intertidal Plum Island Sound estuary in Massachusetts, the largest salt marsh estuary of New England, using 25-km spatial water sampling transects. Across all seasons, dissolved (FHg) and total (THg) mercury concentrations in estuarine water were highest and strongly enhanced in upper marshes (1.31 ± 0.20 ng L-1 and 6.56 ± 3.70 ng L-1, respectively), compared to riverine Hg concentrations (0.86 ± 0.17 ng L-1 and 0.88 ± 0.34 ng L-1, respectively). Mercury concentrations declined from upper to lower marshes and were lowest in ocean water (0.38 ± 0.10 ng L-1 and 0.56 ± 0.25 ng L-1, respectively). Conservative mixing models using river and ocean water as endmembers indicated that internal estuarine Hg sources strongly enhanced estuarine water Hg concentrations. For FHg, internal estuarine Hg contributions were estimated at 26 g yr-1 which enhanced Hg loads from riverine sources to the ocean by 44%. For THg, internal sources amounted to 251 g yr-1 and exceeded riverine sources six-fold. Proposed sources for internal estuarine mercury contributions include atmospheric deposition to the large estuarine surface area and sediment re-mobilization, although sediment Hg concentrations were low (average 23 ± 2 µg kg-1) typical of uncontaminated sediments. Soil mercury concentrations under vegetation, however, were ten times higher (average 200 ± 225 µg kg-1) than in intertidal sediments suggesting that high soil Hg accumulation might drive lateral export of Hg to the ocean. Spatial transects of methylated Hg (MeHg) showed no concentration enhancements in estuarine water and no indication of internal MeHg sources or formation. Initial mass balance considerations suggest that atmospheric deposition may either be in similar magnitude, or possibly exceed lateral tidal export which would be consistent with strong Hg accumulation observed in salt marsh soils sequestering Hg from current and past atmospheric deposition.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Mercurio/análisis , Agua , Contaminantes Químicos del Agua/análisis , Humedales
5.
Environ Sci Technol ; 55(20): 14269-14280, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34618428

RESUMEN

Globally, the consumption of coastal fish is the predominant source of human exposure to methylmercury, a potent neurotoxicant that poses health risks to humans. However, the relative importance of riverine inputs and atmospheric deposition of mercury into coastal oceans remains uncertain owing to a lack of riverine mercury observations. Here, we present comprehensive seasonal observations of riverine mercury and methylmercury loads, including dissolved and particulate phases, to East Asia's coastal oceans, which supply nearly half of the world's seafood products. We found that East Asia's rivers annually exported 95 ± 29 megagrams of mercury to adjacent seas, 3-fold greater than the corresponding atmospheric deposition. Three rivers alone accounted for 71% of East Asia's riverine mercury exports, namely: Yangtze, Yellow, and Pearl rivers. We further conducted a metadata analysis to discuss the mercury burden on seawater and found that riverine export, combined with atmospheric deposition and terrestrial nutrients, quantitatively elevated the levels of total, methylated, and dissolved gaseous mercury in seawater by an order of magnitude. Our observations support that massive amounts of riverine mercury are exported to coastal oceans on a continental scale, intensifying their spread from coastal seawater to the atmosphere, marine sediments, and open oceans. We suggest that the impact of mercury transport along the land-ocean aquatic continuum should be considered in human exposure risk assessments.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Animales , China , Monitoreo del Ambiente , Humanos , Mercurio/análisis , Océanos y Mares , Ríos , Agua de Mar , Contaminantes Químicos del Agua/análisis
6.
J Environ Manage ; 278(Pt 2): 111556, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33137685

RESUMEN

The Soil Water Assessment Tool (SWAT) was used for exploring the sources and retention dynamics of phosphorus nutrient in the river system of the Yong River Basin, China. The performance of the SWAT model was assessed. The retention dynamics of phosphorus nutrient in the river continuum and the factors contributing to those patterns were studied. The results showed that an average of 1828 tons of TP entered the river network of the Yong River Basin annually and in-stream processes trapped 1161 tons yr-1 of TP in the watercourse, which accounted for 63.5% of the annual TP inputs. The TP retention rates in the river network ranged from 3.08 to 63.43 mg m-2 day-1. An average of 666.9 tons of TP was delivered from the estuary to the East China Sea annually. The unit area riverine exports of TP ranged from 102.21 to 244.00 kg km-2 yr-1. The river network is a net sink for TP and is going through a phosphorus accumulation phase. The results confirm that the river system has a considerable phosphorus retention capacity that is highly variable on a spatiotemporal scale. Because of the cumulative effect of continued phosphorus removal along the entire flow path, the retention fractions of phosphorus removed from all streams at the basin scale is considerably higher than that of an individual river portion. The variations of hydrological regimes, water surface area, unit area inputs of phosphorus, and the concentrations of suspended sediments have a great influence on phosphorus retention.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Nitrógeno/análisis , Nutrientes , Fósforo/análisis , Suelo , Agua , Contaminantes Químicos del Agua/análisis
7.
Ambio ; 49(2): 460-474, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31278623

RESUMEN

To tackle the symptoms of eutrophication in the open Baltic Sea and Finnish coastal waters, Finland has agreed to reduce both total nitrogen (TN) and total phosphorus (TP) inputs. Due to large investments in treatment of municipal and industrial wastewaters, TP loads started to decrease already in the mid-1970s and the respective TN loads in the mid-1990s. During the last two decades, much effort has been spent in decreasing the load originating from diffuse sources. Trend analyses in 1995-2016 showed that, despite various mitigation measures, riverine nutrient export has not substantially decreased, and especially the export from rivers draining agricultural lands remains high. In some areas TN concentrations and export were increasing and we found evidence that it was linked to ditching of peatlands. Several factors connected to climate/weather (e.g. temperature and precipitation) have counteracted the mitigation measures, and therefore Finland will not achieve the nutrient reduction targets by 2021.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Países Bálticos , Monitoreo del Ambiente , Eutrofización , Finlandia , Nitrógeno , Nutrientes , Océanos y Mares , Fósforo , Agua
8.
Water Res ; 161: 54-60, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31176884

RESUMEN

Arctic rivers export a large amount of organic carbon (OC) and mercury (Hg) to Arctic oceans. Because there are only a few direct calculations of OC and Hg exports from these large rivers, very little is known about their response to changes in the active layer in northern permafrost-dominated areas. In this study, multiyear data sets from the Arctic Great Rivers Observatory (ArcticGRO) are used to estimate the export of dissolved organic carbon (DOC), particulate organic carbon (POC), total mercury (THg) and methylmercury (MeHg) from the six largest rivers (Yenisey, Lena, Ob, Mackenzie, Yukon and Kolyma) draining to the Arctic Ocean. From 2003 to 2017, annual DOC and POC export to the Arctic Ocean was approximately 21612 Gg and 2728 Gg, and the exports of Hg and MeHg to the Arctic Ocean were approximately 20090 kg and 110 kg (0.002% of the total Hg stored in the northern hemisphere active layer). There were great variations in seasonal OC and Hg concentrations and chemical characteristics, with higher fluxes in spring and lower fluxes in winter (baseline). DOC and Hg concentrations are significantly positively correlated to discharge, as discharge continues to increase in response to a deepening active layer thickness during recent past decades. This study shows that previous results likely underestimated DOC exports from rivers in the circum-Arctic regions, and both OC and Hg exports will increase under predicted climate warming scenarios.


Asunto(s)
Mercurio , Hielos Perennes , Contaminantes Químicos del Agua , Regiones Árticas , Carbono , Monitoreo del Ambiente , Océanos y Mares , Ríos , El Yukón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA