Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39284348

RESUMEN

The SrFeO3 nanoparticles doped with 5% and 10% Gd were synthesized using the solution combustion method. The phase formation of the synthesized nanoparticles was confirmed by powder XRD analysis. FESEM and HRTEM were employed to examine the morphology of the samples, revealing well-ordered, agglomerated nanoparticles. EDAX analysis was conducted on all samples, confirming the presence of the desired elements. X-ray photoelectron spectroscopy confirmed the presence of mixed oxidation states of Fe3+ and Fe4+. Magnetization studies, performed using a SQUID magnetometer, showed ferromagnetic behaviour in all samples, with a significant increase in magnetic moment observed with higher Gd doping. The enhanced magnetic moments and reduced coercivity in Gd-doped SrFeO3 suggest that these materials could be suitable for spintronic applications.

2.
Crit Rev Food Sci Nutr ; : 1-16, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189894

RESUMEN

X-ray diffraction (XRD) is an analytical technique that has found several applications focusing on the identification of crystal structure, space groups, plane, and orientation, in addition to qualitative and quantitative phase identification, and polymorphism behavior. An XRD diffractogram pattern/Bragg's peak can also provide valuable information that can be used for various food applications. While this review details the fundamental principles of XRD, the types of XRD systems, instrumentation, and the components thereof, the focus is to serve as a structured resource on explored applications of XRD in food, majorly revolving around food quality and safety. While recent studies relevant to the field are highlighted, leads for futuristic prospects are presented. With its unique approach, the XRD analysis can prove to be a rapid, robust, and sensitive nondestructive approach to food quality evaluation. Recent reports indicate its scope for nonconventional applications such as the assessment of 3D printability of foods, ice crystal formation, and screening food adulterants. Studies also highlight its scope to complement or replace conventional food quality testing approaches that involve the usage of chemicals, extensive sample preparation procedures, derivatization steps and demand long testing times.

3.
Polymers (Basel) ; 16(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000802

RESUMEN

Currently, petroleum-derived plastics are widely used despite the disadvantage of their long degradation time. Natural polymers, however, can be used as alternatives to overcome this obstacle, particularly cornstarch. The tensile properties of cornstarch films can be improved by adding plant-derived nanofibers. Sisal (Agave sisalana), a very common low-cost species in Brazil, can be used to obtain plant nanofibers. The goal of this study was to obtain sisal nanofibers using low concentrations of sulfuric acid to produce thermoplastic starch nanocomposite films. The films were produced by a casting technique using commercial corn starch, glycerol, and sisal nanofibers, accomplished by acid hydrolysis. The effects of glycerol and sisal nanofiber content on the tensile mechanical properties of the nanocomposites were investigated. Transmission electron microscopy findings demonstrated that the lowest concentration of sulfuric acid produced fibers with nanometric dimensions related to the concentrations used. X-ray diffraction revealed that the untreated fibers and fibers subjected to acid hydrolysis exhibited a crystallinity index of 61.06 and 84.44%, respectively. When the glycerol and nanofiber contents were 28 and 1%, respectively, the tensile stress and elongation were 8.02 MPa and 3.4%. In general, nanocomposites reinforced with sisal nanofibers showed lower tensile stress and higher elongation than matrices without nanofibers did. These results were attributed to the inefficient dispersion of the nanofibers in the polymer matrix. Our findings demonstrate the potential of corn starch nanocomposite films in the packaging industry.

4.
J Colloid Interface Sci ; 669: 444-457, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38723533

RESUMEN

The memristors offer significant advantages as a key element in non-volatile and brain-inspired neuromorphic systems because of their salient features such as remarkable endurance, ability to store multiple bits, fast operation speed, and extremely low energy usage. This work reports the resistive switching (RS) characteristics of the hydrothermally synthesized iron tungstate (FeWO4) based thin film memristive device. The detailed physicochemical analysis was investigated using Rietveld's refinement, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) techniques. The fabricated Ag/FWO/FTO memristive device exhibits bipolar resistive switching (BRS) behavior. In addition, the devices exhibit negative differential resistance (NDR) at both positive and negative bias. The charge-flux relation portrayed the non-ideal or memristive nature of the devices. The reliability in the RS process was analyzed in detail using Weibull distribution and time series analysis techniques. The device exhibits stable and multilevel endurance and retention characteristics which demonstrates the suitability of the device for the high-density non-volatile memory application. The current conduction of the device was dominated by Ohmic and trap controlled-space charge limited current (TC-SCLC) mechanisms and filamentary RS process responsible for the BRS in the device. In a nutshell, the present investigations reveal the potential use of the iron tungstate for the fabrication of memristive devices for the non-volatile memory application.

5.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 3): 292-295, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456054

RESUMEN

The crystal structure of the title compound {systematic name: (4S,4aS,5aR,12aR)-4,7-bis-(di-methyl-amino)-9-[(2,2-di-methyl-propyl-amino)-meth-yl]-1,10,11,12a-tetra-hydroxy-3,12-dioxo-4a,5,5a,6-tetra-hydro-4H-tetra-cene-2-carb-oxamide dihydrate, C29H40N4O7·2H2O} has been solved and refined using synchrotron X-ray powder diffraction data: it crystallizes in space group R3 with a = 24.34430 (7), c = 14.55212 (4) Å, V = 7468.81 (2) Å3 and Z = 9. Most of the hydrogen bonds are intra-molecular, but two classical N-H⋯O inter-molecular hydrogen bonds (along with probable weak C-H⋯O and C-H⋯N hydrogen bonds) link the mol-ecules into a three-dimensional framework. The framework contains voids, which contain disordered water mol-ecules. Keto-enol tautomerism is apparently important in this mol-ecule, and the exact mol-ecular structure is ambiguous.

6.
Sci Total Environ ; 925: 171615, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38462009

RESUMEN

The Abinky formation, composed of analcimolites (i.e., rocks with <70 wt% analcime), underlies Tchirezrine II, which hosts the Imouraren (Niger) uranium deposit. A potential mining project is under consideration to recover U by in situ acid leaching. Analcimolites are uncommon rocks, and assessing their ion-exchange properties is the first step to understand and predict the mobility of aqueous species in these formations. The objective of this study is then to understand the link between the Cation Exchange Capacities (CEC) of analcimolites as a function of their analcime content and associated crystal chemistry. Mineral quantification was performed by Rietveld refinement constrained by local chemical analysis with scanning electron microscopy coupled with Energy Dispersive Spectrometry. CEC were obtained at neutral pH by performing NH4+-for-Na+ exchange (CECNa/NH4), and Na+/H+ ion exchange experiments were performed with 4 analcimolites. Results showed that the analcime crystal chemistry deduced from Rietveld refinement was in good agreement with that obtained from SEM analysis (1.99 < Si/Al < 2.53). The results showed that all samples had a positive correlation between CECNa/NH4 and analcime content until ~30 meq/100 g for a sample containing ~85wt%Riet. of analcime, and that ~6 % of the total amounts of Na+ present in the analcime could be exchanged by NH4+ and H+. Based on Si and Al aqueous measurements, results showed that exchange with Na+ is the main process consuming H+ during Na+/H+ exchange when pH > 3.5. These experimental data were then interpreted by considering a single site equal to the CECNa/NH4 value, specific for each analcimolite, and a selectivity coefficient equal to log KNa/H = 1.3 (Gaines Thomas convention) being equal for all samples investigated. Finally, these data were used to assess the role played by Na+/H+ exchange in the pH evolution of the pore water of an analcime-rich rock subjected to dynamic acidification.

7.
Acta Crystallogr C Struct Chem ; 80(Pt 2): 49-55, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38318692

RESUMEN

We prepared a 3d-4f heterobimetallic CuEu-organic framework NBU-8 with a density of 1921 kg m-3 belonging to the family of dense packing materials (dense metal-organic frameworks or MOFs). This MOF material was prepared from 4-(pyrimidin-5-yl)benzoic acid (HPBA) with a bifunctional ligand site as a tripodal ligand and Cu2+ and Eu3+ as the metal centres; the molecular formula is Cu3Eu2(PBA)6(NO3)6·H2O. This material is a very promising dimethylformamide (DMF) molecular chemical sensor. Systematic high-pressure studies of NBU-8 were carried out by powder X-ray diffraction, high-pressure X-ray diffraction and molecular dynamics simulation. The high-pressure experiment shows that the (006) diffraction peak of the crystal structure moves toward a low angle with increasing pressure, accompanied by the phenomenon that the d-spacing increases, and as the pressure increases, the (10-2) diffraction peak moves to a higher angle, the amplitude of the d-spacing is significantly reduced and finally merges with the (006) diffraction peak into one peak. The amplitude of the d-spacing is significantly reduced, indicating that NBU-8 compresses and deforms along the a-axis direction when subjected to uniform pressure. This is caused by tilting of the ligands to become more vertical along the c direction, leading to its expansion. This allows greater contraction along the a direction. We also carried out a Rietveld structure refinement and a Birch-Murnaghan solid-state equation fitting for the high-pressure experimental results. We calculated the bulk modulus of the material to be 45.68 GPa, which is consistent with the calculated results. The framework is among the most rigid MOFs reported to date, exceeding that of Cu-BTC. Molecular dynamics simulations estimated that the mechanical energy absorbed by the system when pressurized to 5.128 GPa was 249.261 kcal mol-1. The present work will provide fresh ideas for the study of mechanical energy in other materials.

8.
Small Methods ; : e2301466, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38164821

RESUMEN

Lithium-rich layered oxides (LRLOs) are one of the most attractive families among future positive electrode materials for the so-called fourth generation of lithium-ion batteries (LIBs). Their electrochemical performance is enabled by the unique ambiguous crystal structure that is still not well understood despite decades of research. In the literature, a clear structural model able to describe their crystallographic features is missing thereby hindering a clear rationalization of the interplay between synthesis, structure, and functional properties. Here, the structure of a specific LRLO, Li1.28 Mn0.54 Ni0.13 Co0.02 Al0.03 O2 , using synchrotron X-ray diffraction (XRD), neutron diffraction (ND), and High-Resolution Transmission Electron Microscopy (HR-TEM), is analyzed. A systematic approach is applied to model diffraction patterns of Li1.28 Mn0.54 Ni0.13 Co0.02 Al0.03 O2 by using the Rietveld refinement method considering the R 3 ¯ $\bar{3}$ m and C2/m unit cells as the prototype structures. Here, the relative ability of a variety of structural models is compared to match the experimental diffraction pattern evaluating the impact of defects and supercells derived from the R 3 ¯ $\bar{3}$ m structure. To summarize, two possible models able to reconcile the description of experimental data are proposed here for the structure of Li1.28 Mn0.54 Ni0.13 Co0.02 Al0.03 O2 : namely a monoclinic C2/m defective lattice (prototype Li2 MnO3 ) and a monoclinic defective supercell derived from the rhombohedral R 3 ¯ $\bar{3}$ m unit cell (prototype LiCoO2 ).

9.
J Fluoresc ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095770

RESUMEN

Rare earth-doped nanophosphors have gained the attention of scientist as a result of their application in many devices like color display, laser cooling, bioimaging, and especially white light emitting diodes (WLEDs). Sr3La1-x(PO4)3: xDy3+ (x = 0.01 to 0.15 mol) white light emitting nanophosphors were synthesized by a resourceful and effective technique which is solution combustion synthesis utilizing urea as fuel at 1200 °C and their photoluminescence and structural properties were inspected using powder X-ray diffraction (PXRD) spectroscopy, energy dispersive X-ray (EDAX) spectroscopy, Transmission Electron Microscopy (TEM) and photoluminescence (PL) spectroscopy. Rietveld refinement employing on XRD data disclosed that synthesized samples are of cubic lattice with I-43d (220) space group. The photoluminescence emission spectra revealed two main characteristic bands at 480 nm and 574 nm, the band at 480 nm has magnetic-dipole transition characteristic to 4F9/2 → 6H15/2 responsible for blue light emission and the peak at 574 nm is for electric-dipole transition characteristic to 4F9/2 → 6H13/2 answerable for yellow light emission. x = 0.03 mol was found to be the optimum concentration for the nanophosphors series and the critical transfer distance (Rc) was determined to be 25 Å which eventually illustrated the existence of multipolar interactions between Dy3+ ions. CCT value (7908 K) and CIE coordinates (0.292, 0.320) of Sr3La0.97Dy0.03(PO4)3 nanophosphor confirmed their brilliant workability in the innovative optoelectronic devices, specifically single-phase WLEDs for the lighting purpose. So, this phosphor could be a potential component in near ultra-violet excited WLEDs.

10.
Biomimetics (Basel) ; 8(7)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37999188

RESUMEN

This study aimed to explore the effects of the full-scale replacement (up to 100%) of Ca2+ ions with Ag1+ ions in the structure of brushite (CaHPO4·2H2O). This substitution has potential benefits for producing monophasic and biphasic Ca1-xAgxHPO4·nH2O compounds. To prepare the starting solutions, (NH4)2HPO4, Ca(NO3)2·4H2O, and AgNO3 at different concentrations were used. The results showed that when the Ag/Ca molar ratio was below 0.25, partial substitution of Ca with Ag reduced the size of the unit cell of brushite. As the Ag/Ca molar ratio increased to 4, a compound with both monoclinic CaHPO4·2H2O and cubic nanostructured Ag3PO4 phases formed. There was a nearly linear relationship between the Ag ion ratio in the starting solutions and the wt% precipitation of the Ag3PO4 phase in the resulting compound. Moreover, when the Ag/Ca molar ratio exceeded 4, a single-phase Ag3PO4 compound formed. Hence, adjusting the Ag/Ca ratio in the starting solution allows the production of biomaterials with customized properties. In summary, this study introduces a novel synthesis method for the mono- and biphasic Ca1-xAgxHPO4·nH2O compounds brushite and silver phosphate. The preparation of these phases in a one-pot synthesis with controlled phase composition resulted in the enhancement of existing bone cement formulations by allowing better mixing of the starting ingredients.

11.
Micromachines (Basel) ; 14(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37893297

RESUMEN

In Tb-Dy-Fe alloy systems, Tb0.29Dy0.71Fe1.95 alloy shows giant magnetostrictive properties under low magnetic fields, thus having great potential for transducer and sensor applications. In this work, the lattice parameters of Tb0.29Dy0.71Fe1.95 compounds as a function of a magnetic field were investigated using in situ X-ray diffraction under an applied magnetic field. The results showed that the c-axis elongation of the rhombohedral unit cell was the dominant contributor to magnetostriction at a low magnetic field (0-500 Oe). As the magnetic field intensity increased from 500 Oe to 1500 Oe, although the magnetostrictive coefficient continued to increase, the lattice constant did not change, which indicated that the elongated c-axis of the rhombohedral unit cell rotated in the direction of the magnetic field. This rotation mainly contributed to the magnetostriction phenomenon at magnetic fields of above 500 Oe. The structural origin of the magnetostriction performance of these materials was attributed to the increase in rhombohedral lattice parameters and the rotation of the extension axis of the rhombohedral lattice.

12.
J Mech Behav Biomed Mater ; 147: 106107, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690293

RESUMEN

We investigated the crystal structure and mechanical properties of oyster shells subjected to heat treatment under increasing temperature conditions. The shell contained folia and chalky layers. The folia layer comprised two CaCO3 phases: 72.3% calcite and 27.7% aragonite. The lattice parameters of the calcite and aragonite present in the folia layer did not correspond to those of the synthesized sample. The anisotropic lattice expansion was observed in calcite and aragonite in the folia layer during heat-treatment. The chalky layer has also the anisotropic lattice expansion, but the expansion was disappeared at 573 K. The microhardness (HV value) of the folia layer decreased rapidly from 122 to 11 HV at temperatures 573-673 K owing to the phase transformation from aragonite to calcite in this temperature range. The microhardness of the chalky layer at RT was 125 HV, which decreased to 15 HV at 373 K. Crack propagation with increasing temperature was investigated using a micro-Vickers apparatus. In the folia layer, cracks were produced inside the prism, and they propagated along the lamellar structure. The cracks initiated and propagated along the organic biopolymer interlayers in a zigzag manner. No cracks were observed in the chalky layers of the heat-treated samples. The toughness of the chalky layer was superior to that of the folia layer. From our results, we can conclude that oyster shells comprise two types of materials with different mechanical properties.

13.
Molecules ; 28(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37630362

RESUMEN

CdxNi0.5-xCu0.2Zn0.3Fe2O4 (0 ≤ x ≤ 0.50) ferrite with a spinel structure was prepared using the sol-gel self-propagation method. The effects of Cd2+ doping on the structure, morphology, dielectric, and magnetic properties of Ni-Cu-Zn ferrite were examined using XRD, SEM, EDX, FTIR, MPMS, and dielectric tests. The cubic spinel structure was verified by XRD and FTIR analyses. The crystallite size and particle size information of the samples were obtained with XRD and SEM analysis. The sample particle size belonged to a class of nanoscale materials with a particle size range of 1-100 nm. The minor difference between the grain size and particle size indicated that the sample nanoparticles were composed of numerous microcrystals. The EDX spectra indicated that the samples contained all stoichiometric elements. MPMS was used to measure the hysteresis lines of the samples. According to the hysteresis line, the saturation magnetization intensity (Ms), coercivity (Hc), and magnetic moment (µB) of the sample increased and then decreased with the increase in cadmium concentration. The magnetization strength (Ms) is between 4-67 emu/g, and the coercivity (Hc) is between 9-46 Oe. The curves of the real part of the dielectric constant (ε'), the imaginary part of the dielectric constant (ε″), and the loss factor (tanδ) with frequency were measured in the frequency range 100 Hz-100 kHz by means of an impedance analyzer. The complex modulus spectrum was analyzed to understand the dynamics of the conduction process.

14.
J Appl Crystallogr ; 56(Pt 4): 1066-1075, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37555229

RESUMEN

Studying chemical reactions in real time can provide unparalleled insight into the evolution of intermediate species and can provide guidance to optimize the reaction conditions. For solid-state synthesis reactions, powder diffraction has been demonstrated as an effective tool for resolving the structural evolution taking place upon heating. The synthesis of layered Ni-rich transition-metal oxides at a large scale (grams to kilograms) is highly relevant as these materials are commonly employed as cathodes for Li-ion batteries. In this work, in situ neutron diffraction was used to monitor the reaction mechanism during the high-temperature synthesis of Ni-rich cathode materials with a varying ratio of Ni:Mn from industrially relevant hydroxide precursors. Rietveld refinement was further used to model the observed phase evolution during synthesis and compare the behaviour of the materials as a function of temperature. The results presented herein confirm the suitability of in situ neutron diffraction to investigate the synthesis of batches of several grams of electrode materials with well-controlled stoichiometry. Furthermore, monitoring the structural evolution of the mixtures with varying Ni:Mn content in real time reveals a delayed onset of li-thia-tion as the Mn content is increased, necessitating the use of higher annealing temperatures to achieve layering.

15.
J Appl Crystallogr ; 56(Pt 4): 1277-1286, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37555231

RESUMEN

Modern diffraction experiments (e.g. in situ parametric studies) present scientists with many diffraction patterns to analyze. Interactive analyses via graphical user interfaces tend to slow down obtaining quantitative results such as lattice parameters and phase fractions. Furthermore, Rietveld refinement strategies (i.e. the parameter turn-on-off sequences) tend to be instrument specific or even specific to a given dataset, such that selection of strategies can become a bottleneck for efficient data analysis. Managing multi-histogram datasets such as from multi-bank neutron diffractometers or caked 2D synchrotron data presents additional challenges due to the large number of histogram-specific parameters. To overcome these challenges in the Rietveld software Material Analysis Using Diffraction (MAUD), the MAUD Interface Language Kit (MILK) is developed along with an updated text batch interface for MAUD. The open-source software MILK is computer-platform independent and is packaged as a Python library that interfaces with MAUD. Using MILK, model selection (e.g. various texture or peak-broadening models), Rietveld parameter manipulation and distributed parallel batch computing can be performed through a high-level Python interface. A high-level interface enables analysis workflows to be easily programmed, shared and applied to large datasets, and external tools to be integrated with MAUD. Through modification to the MAUD batch interface, plot and data exports have been improved. The resulting hierarchical folders from Rietveld refinements with MILK are compatible with Cinema: Debye-Scherrer, a tool for visualizing and inspecting the results of multi-parameter analyses of large quantities of diffraction data. In this manuscript, the combined Python scripting and visualization capability of MILK is demonstrated with a quantitative texture and phase analysis of data collected at the HIPPO neutron diffractometer.

16.
ChemistryOpen ; 12(7): e202300032, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37469025

RESUMEN

This paper describes solid solutions in the quasibinary oxide system iridium-titanium IrO2 -TiO2 with rutile and anatase crystal structures. Based on X-ray diffraction evaluations using Rietveld refinements, changes of lattice parameters were determined within the composition series of 0-100 mol % iridium. These changes prove the existence of a complete solid solution series in the rutile structure type. The solubility limit for iridium in the anatase lattice was found to be 6.0(8) mol % iridium for the underlying sol-gel process. In addition, iridium is a promoter for the conversion from anatase to rutile type. Furthermore, the X-ray diffraction results of a calcination temperature series for the composition with 5 mol % iridium are shown, which confirm the findings of the composition series and allow conclusions on the phase segregation behavior. The results are complemented by 2-point conductivity measurements at different pressures in a piston press to investigate the question of the conductivity mechanism.

17.
Sci Total Environ ; 900: 165910, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37524186

RESUMEN

The contamination of heavy metal lead has a serious impact on the natural environment and organisms. Among various materials for lead removal, animal bone derived hydroxyapatite has received extensive attention. However, there are different opinions among researchers regarding the mechanism of lead removal by hydroxyapatite, possibly due to varying initial lead concentrations used in different studies and lack of accuracy in the study of lead removal mechanisms. In present work, we synthesized a carbon-containing hydroxyapatite (CHAP) through pyrolysis of bovine bone with excellent lead removal efficiency, and further investigated the lead removal mechanism of CHAP under high and low initial lead concentrations by combining XRD Rietveld refinement, FTIR, XPS, HRTEM etc. methods. The results showed that under low initial Pb2+ concentration condition, the main mechanism of lead removal by CHAP was chemical precipitation (94.1 %), with small contributions of lead complexation with carbon functional groups and cation-π interactions on the amorphous carbon in CHAP, and surface adsorption on the precipitates. Under high initial Pb2+ concentration condition, chemical precipitation remained the main mechanism (74.68 %), but the contributions of the other three mechanisms increased, and ion exchange appeared in the later stage of the removal process. This study provides new insights on the lead immobilization mechanism by CHAP at different initial Pb2+ concentrations in water.

18.
Nano Lett ; 23(12): 5460-5466, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37310266

RESUMEN

The family of copper antimony selenides is important for renewable energy applications. Several phases are accessible within narrow energy and compositional ranges, and tunability between phases is not well-established. Thus, this system provides a rich landscape to understand the phase transformations that occur in hot-injection nanoparticle syntheses. Rietveld refinements on X-ray diffraction patterns model anisotropic morphologies to obtain phase percentages. Reactions targeting the stoichiometry of CuSbSe2 formed Cu3SbSe3 before decomposing to thermodynamically stable CuSbSe2 over time. An amide base was added to balance cation reactivity and directly form CuSbSe2. Interestingly, Cu3SbSe3 remained present but converted to CuSbSe2 more rapidly. We propose that initial Cu3SbSe3 formation may be due to the selenium species not being reactive enough to balance the high reactivity of the copper complex. The unexpected effect of a base on cation reactivity in this system provides insight into the advantages and limitations for its use in other multivalent systems.

19.
J Appl Crystallogr ; 56(Pt 3): 633-642, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37284252

RESUMEN

The high-intensity time-of-flight (TOF) neutron diffractometer POWTEX for powder and texture analysis is currently being built prior to operation in the eastern guide hall of the research reactor FRM II at Garching close to Munich, Germany. Because of the world-wide 3He crisis in 2009, the authors promptly initiated the development of 3He-free detector alternatives that are tailor-made for the requirements of large-area diffractometers. Herein is reported the 2017 enterprise to operate one mounting unit of the final POWTEX detector on the neutron powder diffractometer POWGEN at the Spallation Neutron Source located at Oak Ridge National Laboratory, USA. As a result, presented here are the first angular- and wavelength-dependent data from the POWTEX detector, unfortunately damaged by a 50g shock but still operating, as well as the efforts made both to characterize the transport damage and to successfully recalibrate the voxel positions in order to yield nonetheless reliable measurements. Also described is the current data reduction process using the PowderReduceP2D algorithm implemented in Mantid [Arnold et al. (2014). Nucl. Instrum. Methods Phys. Res. A, 764, 156-166]. The final part of the data treatment chain, namely a novel multi-dimensional refinement using a modified version of the GSAS-II software suite [Toby & Von Dreele (2013). J. Appl. Cryst.46, 544-549], is compared with a standard data treatment of the same event data conventionally reduced as TOF diffraction patterns and refined with the unmodified version of GSAS-II. This involves both determining the instrumental resolution parameters using POWGEN's powdered diamond standard sample and the refinement of a friendly-user sample, BaZn(NCN)2. Although each structural parameter on its own looks similar upon comparing the conventional (1D) and multi-dimensional (2D) treatments, also in terms of precision, a closer view shows small but possibly significant differences. For example, the somewhat suspicious proximity of the a and b lattice parameters of BaZn(NCN)2 crystallizing in Pbca as resulting from the 1D refinement (0.008 Å) is five times less pronounced in the 2D refinement (0.038 Å). Similar features are found when comparing bond lengths and bond angles, e.g. the two N-C-N units are less differently bent in the 1D results (173 and 175°) than in the 2D results (167 and 173°). The results are of importance not only for POWTEX but also for other neutron TOF diffractometers with large-area detectors, like POWGEN at the SNS or the future DREAM beamline at the European Spallation Source.

20.
IUCrJ ; 10(Pt 4): 448-463, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335768

RESUMEN

Leucopterin (C6H5N5O3) is the white pigment in the wings of Pieris brassicae butterflies, and other butterflies; it can also be found in wasps and other insects. Its crystal structure and its tautomeric form in the solid state were hitherto unknown. Leucopterin turned out to be a variable hydrate, with 0.5 to about 0.1 molecules of water per leucopterin molecule. Under ambient conditions, the preferred state is the hemihydrate. Initially, all attempts to grow single crystals suitable for X-ray diffraction were to no avail. Attempts to determine the crystal structure by powder diffraction using the direct-space method failed, because the trials did not include the correct, but rare, space group P2/c. Attempts were made to solve the crystal structure by a global fit to the pair distribution function (PDF-Global-Fit), as described by Prill and co-workers [Schlesinger et al. (2021). J. Appl. Cryst. 54, 776-786]. The approach worked well, but the correct structure was not found, because again the correct space group was not included. Finally, tiny single crystals of the hemihydrate could be obtained, which allowed at least the determination of the crystal symmetry and the positions of the C, N and O atoms. The tautomeric state of the hemihydrate was assessed by multinuclear solid-state NMR spectroscopy. 15N CPMAS spectra showed the presence of one NH2 and three NH groups, and one unprotonated N atom, which agreed with the 1H MAS and 13C CPMAS spectra. Independently, the tautomeric state was investigated by lattice-energy minimizations with dispersion-corrected density functional theory (DFT-D) on 17 different possible tautomers, which also included the prediction of the corresponding 1H, 13C and 15N chemical shifts in the solid. All methods showed the presence of the 2-amino-3,5,8-H tautomer. The DFT-D calculations also confirmed the crystal structure. Heating of the hemihydrate results in a slow release of water between 130 and 250 °C, as shown by differential thermal analysis and thermogravimetry (DTA-TG). Temperature-dependent powder X-ray diffraction (PXRD) showed an irreversible continuous shift of the reflections upon heating, which reveals that leucopterin is a variable hydrate. This observation was also confirmed by PXRD of samples obtained under various synthetic and drying conditions. The crystal structure of a sample with about 0.2 molecules of water per leucopterin was solved by a fit with deviating lattice parameters (FIDEL), as described by Habermehl et al. [Acta Cryst. (2022), B78, 195-213]. A local fit, starting from the structure of the hemihydrate, as well as a global fit, starting from random structures, were performed, followed by Rietveld refinements. Despite dehydration, the space group remains P2/c. In both structures (hemihydrate and variable hydrate), the leucopterin molecules are connected by 2-4 hydrogen bonds into chains, which are connected by further hydrogen bonds to neighbouring chains. The molecular packing is very efficient. The density of leucopterin hemihydrate is as high as 1.909 kg dm-3, which is one of the highest densities for organic compounds consisting of C, H, N and O only. The high density might explain the good light-scattering and opacity properties of the wings of Pieris brassicae and other butterflies.


Asunto(s)
Mariposas Diurnas , Animales , Análisis de los Mínimos Cuadrados , Espectroscopía de Resonancia Magnética , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA