Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Front Neurosci ; 18: 1405734, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855440

RESUMEN

Objective: In this work, we propose a novel method for constructing whole-brain spatio-temporal multilayer functional connectivity networks (FCNs) and four innovative rich-club metrics. Methods: Spatio-temporal multilayer FCNs achieve a high-order representation of the spatio-temporal dynamic characteristics of brain networks by combining the sliding time window method with graph theory and hypergraph theory. The four proposed rich-club scales are based on the dynamic changes in rich-club node identity, providing a parameterized description of the topological dynamic characteristics of brain networks from both temporal and spatial perspectives. The proposed method was validated in three independent differential analysis experiments: male-female gender difference analysis, analysis of abnormality in patients with autism spectrum disorders (ASD), and individual difference analysis. Results: The proposed method yielded results consistent with previous relevant studies and revealed some innovative findings. For instance, the dynamic topological characteristics of specific white matter regions effectively reflected individual differences. The increased abnormality in internal functional connectivity within the basal ganglia may be a contributing factor to the occurrence of repetitive or restrictive behaviors in ASD patients. Conclusion: The proposed methodology provides an efficacious approach for constructing whole-brain spatio-temporal multilayer FCNs and conducting analysis of their dynamic topological structures. The dynamic topological characteristics of spatio-temporal multilayer FCNs may offer new insights into physiological variations and pathological abnormalities in neuroscience.

2.
Eur J Neurosci ; 60(3): 4169-4181, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38779858

RESUMEN

Alzheimer's disease (AD) is characterized by significant cerebral dysfunction, including increased amyloid deposition, gray matter atrophy, and changes in brain function. The involvement of highly connected network hubs, known as the "rich club," in the pathology of the disease remains inconclusive despite previous research efforts. In this study, we aimed to systematically assess the link between the rich club and AD using a multimodal neuroimaging approach. We employed network analyses of diffusion magnetic resonance imaging (MRI), longitudinal assessments of gray matter atrophy, amyloid deposition measurements using positron emission tomography (PET) imaging, and meta-analytic data on functional activation differences. Our study focused on evaluating the role of both the structural brain network's core and extended rich club regions in individuals with mild cognitive impairment (MCI) and those diagnosed with AD. Our findings revealed that structural rich club regions exhibited accelerated gray matter atrophy and increased amyloid deposition in both MCI and AD. Importantly, these regions remained unaffected by altered functional activation patterns observed outside the core rich club regions. These results shed light on the connection between two major AD biomarkers and the rich club, providing valuable insights into AD as a potential disconnection syndrome.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Disfunción Cognitiva , Sustancia Gris , Imagen Multimodal , Tomografía de Emisión de Positrones , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Atrofia/patología , Anciano , Tomografía de Emisión de Positrones/métodos , Imagen Multimodal/métodos , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/metabolismo , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Amiloide/metabolismo , Imagen de Difusión por Resonancia Magnética/métodos
3.
Brain Imaging Behav ; 18(4): 808-818, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38492128

RESUMEN

Previous studies have shown that language acquisition influences both the structure and function of the brain. However, whether the acquisition of a second language at different periods of life alters functional network organization in different ways remains unclear. Here, functional magnetic resonance imaging data from 27 English-speaking monolingual controls and 52 Spanish-English bilingual individuals, including 22 early bilinguals who began learning a second language before the age of ten and 30 late bilinguals who started learning a second language at age fourteen or later, were collected from the OpenNeuro database. Topological metrics of resting-state functional networks, including small-world attributes, network efficiency, and rich- and diverse-club regions, that characterize functional integration and segregation of the networks were computed via a graph theoretical approach. The results showed obvious increases in network efficiency in early bilinguals and late bilinguals relative to the monolingual controls; for example, the global efficiency of late bilinguals and early bilinguals was improved relative to that of monolingual controls, and the local efficiency of early bilinguals occupied an intermediate position between that of late bilinguals and monolingual controls. Obvious increases in rich-club and diverse-club functional connectivity were observed in the bilinguals relative to the monolingual controls. Three network metrics were positively correlated with Spanish proficiency test scores. These findings demonstrated that early and late acquisition of a second language had different impacts on the functional networks of the brain.


Asunto(s)
Mapeo Encefálico , Encéfalo , Imagen por Resonancia Magnética , Multilingüismo , Vías Nerviosas , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Femenino , Masculino , Mapeo Encefálico/métodos , Adulto Joven , Vías Nerviosas/fisiología , Adolescente , Niño , Adulto , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Lenguaje , Desarrollo del Lenguaje , Aprendizaje/fisiología
4.
Hum Brain Mapp ; 45(2): e26598, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339955

RESUMEN

The network nature of the brain is gradually becoming a consensus in the neuroscience field. A set of highly connected regions in the brain network called "rich-club" are crucial high efficiency communication hubs in the brain. The abnormal rich-club organization can reflect underlying abnormal brain function and metabolism, which receives increasing attention. Diabetes is one of the risk factors for neurological diseases, and most individuals with prediabetes will develop overt diabetes within their lifetime. However, the gradual impact of hyperglycemia on brain structures, including rich-club organization, remains unclear. We hypothesized that the brain follows a special disrupted pattern of rich-club organization in prediabetes and diabetes. We used cross-sectional baseline data from the population-based PolyvasculaR Evaluation for Cognitive Impairment and vaScular Events (PRECISE) study, which included 2218 participants with a mean age of 61.3 ± 6.6 years and 54.1% females comprising 1205 prediabetes, 504 diabetes, and 509 normal control subjects. The rich-club organization and network properties of the structural networks derived from diffusion tensor imaging data were investigated using a graph theory approach. Linear mixed models were used to assess associations between rich-club organization disruptions and the subjects' glucose status. Based on the graphical analysis methods, we observed the disrupted pattern of rich-club organization was from peripheral regions mainly located in frontal areas to rich-club regions mainly located in subcortical areas from prediabetes to diabetes. The rich-club organization disruptions were associated with elevated glucose levels. These findings provided more details of the process by which hyperglycemia affects the brain, contributing to a better understanding of the potential neurological consequences. Furthermore, the disrupted pattern observed in rich-club organization may serve as a potential neuroimaging marker for early detection and monitoring of neurological disorders in individuals with prediabetes or diabetes.


Asunto(s)
Conectoma , Hiperglucemia , Estado Prediabético , Femenino , Humanos , Persona de Mediana Edad , Anciano , Masculino , Imagen de Difusión Tensora/métodos , Estado Prediabético/diagnóstico por imagen , Estudios Transversales , Encéfalo/diagnóstico por imagen , Glucosa , Vías Nerviosas
5.
Brain Imaging Behav ; 18(3): 662-674, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38349505

RESUMEN

Early onset depression (EOD) and late onset depression (LOD) are thought to have different pathogeneses, but lack of pathological evidence. In the current study we describe the dynamic rich-club properties of patients with EOD and LOD to address this question indirectly. We recruited 82 patients with late life depression (EOD 40, LOD 42) and 90 healthy controls. Memory, executive function and processing speed were measured, and resting-stage functional MRI was performed with all participants. We constructed a dynamic functional connectivity network and carried out rich-club and modularity analyses. Normalized mutual information (NMI) was applied to describe the variance in rich-club nodes distribution and partitioning. The NMI coefficient of rich club nodes distribution among the three groups was the lowest in the EOD patients (F = 4.298; P = 0.0151, FDR = 0.0231), which was positively correlated with rich-club connectivity (R = 0.886, P < 0.001) and negatively correlated with memory (R = -0.347, P = 0.038) in the EOD group. In the LOD patients, non-rich-club connectivity was positively correlated with memory (R = 0.353, P = 0.030 and R = 0.420, P = 0.009). Furthermore, local connectivity was positively correlated with processing speed in the LOD patients (R = 0.374, P = 0.021). The modular partition was different between the EOD patients and the HCs (P = 0.0013 < 0.05/3). The temporal instability of rich-club nodes was found in the EOD patients, but not the LOD patients, supporting the hypothesis that EOD and LOD result from different pathogenesis, and showing that the instability of the rich-club nodes across time might disrupt rich-club connectivity.


Asunto(s)
Encéfalo , Depresión , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Adulto , Depresión/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Anciano , Conectoma/métodos , Edad de Inicio , Memoria/fisiología , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Función Ejecutiva/fisiología , Pruebas Neuropsicológicas
6.
J Magn Reson Imaging ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353493

RESUMEN

BACKGROUND: Studies on potential disruptions in rich club structure in nursing staff with occupational burnout are lacking. Moreover, existing studies on nurses with burnout are limited by their cross-sectional design. PURPOSE: To investigate rich club reorganization in nursing staff before and after the onset of burnout and the underlying impact of anatomical distance on such reconfiguration. STUDY TYPE: Prospective, longitudinal. POPULATION: Thirty-nine hospital nurses ( 23.67 ± 1.03 $$ 23.67\pm 1.03 $$ years old at baseline, 24.67 ± 1.03 $$ 24.67\pm 1.03 $$ years old at a follow-up within 1.5 years, 38 female). FIELD STRENGTH/SEQUENCE: Magnetization-prepared rapid gradient-echo and gradient-echo echo-planar imaging sequences at 3.0 T. ASSESSMENT: The Maslach Burnout Inventory and Symptom Check-List 90 testing were acquired at each MRI scan. Rich club structure was assessed at baseline and follow-up to determine whether longitudinal changes were related to burnout and to changes in connectivities with different anatomical distances (short-, mid-, and long range). STATISTICAL TESTS: Chi-square, paired-samples t, two-sample t, Mann-Whitney U tests, network-based statistic, Spearman correlation analysis, and partial least squares regression analysis. Significance level: Bonferroni-corrected P < 0.05 $$ P<0.05 $$ . RESULTS: In nurses who developed burnout: 1) Strengths of rich club, feeder, local, short-, mid-, and long-range connectivities were significantly decreased at follow-up compared with baseline. 2) At follow-up, strengths of above connectivities and that between A5m.R and dlPu.L were significantly correlated with emotional exhaustion (r ranges from -0.57 to -0.73) and anxiety scores (r = -0.56), respectively. 3) Longitudinal change (follow-up minus baseline) in connectivity strength between A5m.R and dlPu.L reflected change in emotional exhaustion score (r = 0.87). Longitudinal changes in strength of connectivities mainly involving parietal lobe were significantly decreased in nurses who developed burnout compared with those who did not. DATA CONCLUSION: In nurses after the onset of burnout, rich club reorganization corresponded to significant reductions in strength of connectivities with different anatomical distances. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.

7.
Aging Brain ; 5: 100105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38273866

RESUMEN

We investigated age-related trends in the topology and hierarchical organization of brain structural and functional networks using diffusion-weighted imaging and resting-state fMRI data from a large cohort of healthy aging adults. At the cross-modal level, we explored age-related patterns in the RC involvement of different functional subsystems using a high-resolution functional parcellation. We further assessed age-related differences in the structure-function coupling as well as the network vulnerability to damage to rich club connectivity. Regardless of age, the structural and functional brain networks exhibited a rich club organization and small-world topology. In older individuals, we observed reduced integration and segregation within the frontal-occipital regions and the cerebellum along the brain's medial axis. Additionally, functional brain networks displayed decreased integration and increased segregation in the prefrontal, centrotemporal, and occipital regions, and the cerebellum. In older subjects, structural networks also exhibited decreased within-network and increased between-network RC connectivity. Furthermore, both within-network and between-network RC connectivity decreased in functional networks with age. An age-related decline in structure-function coupling was observed within sensory-motor, cognitive, and subcortical networks. The structural network exhibited greater vulnerability to damage to RC connectivity within the language-auditory, visual, and subcortical networks. Similarly, for functional networks, increased vulnerability was observed with damage to RC connectivity in the cerebellum, language-auditory, and sensory-motor networks. Overall, the network vulnerability decreased significantly in subjects older than 70 in both networks. Our findings underscore significant age-related differences in both brain functional and structural RC connectivity, with distinct patterns observed across the adult lifespan.

8.
J Magn Reson Imaging ; 59(4): 1358-1370, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37491872

RESUMEN

BACKGROUND: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy has been implemented as a therapeutic alternative for the treatment of drug-refractory essential tremor (ET). However, its impact on the brain structural network is still unclear. PURPOSE: To investigate both global and local alterations of the white matter (WM) connectivity network in ET after MRgFUS thalamotomy. STUDY TYPE: Retrospective. SUBJECTS: Twenty-seven ET patients (61 ± 11 years, 19 males) with MRgFUS thalamotomy and 28 healthy controls (HC) (61 ± 11 years, 20 males) were recruited for comparison. FIELD STRENGTH/SEQUENCE: A 3 T/single shell diffusion tensor imaging by using spin-echo-based echo-planar imaging, three-dimensional T1 weighted imaging by using gradient-echo-based sequence. ASSESSMENT: Patients were undergoing MRgFUS thalamotomy and their clinical data were collected from pre-operation to 6-month post-operation. Network topological metrics, including rich-club organization, small-world, and efficiency properties were calculated. Correlation between the topological metrics and tremor scores in ET groups was also calculated to assess the role of neural remodeling in the brain. STATISTICAL TESTS: Two-sample independent t-tests, chi-squared test, ANOVA, Bonferroni test, and Spearman's correlation. Statistical significance was set at P < 0.05. RESULTS: For ET patients, the strength of rich-club connection and clustering coefficient significantly increased vs. characteristic path length decreased at 6-month post-operation compared with pre-operation. The distribution pattern of rich-club regions was different in ET groups. Specifically, the order of the rich-club regions was changed according to the network degree value after MRgFUS thalamotomy. Moreover, the altered nodal efficiency in the right temporal pole of the superior temporal gyrus (R = 0.434-0.596) and right putamen (R = 0.413-0.436) was positively correlated with different tremor improvement. DATA CONCLUSION: These findings might improve understanding of treatment-induced modulation from a network perspective and may work as an objective marker in the assessment of ET tremor control with MRgFUS thalamotomy. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 4.


Asunto(s)
Temblor Esencial , Sustancia Blanca , Masculino , Humanos , Imagen de Difusión Tensora , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/cirugía , Estudios Retrospectivos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/cirugía , Temblor , Tálamo/diagnóstico por imagen , Tálamo/cirugía , Imagen por Resonancia Magnética/métodos , Resultado del Tratamiento
9.
Hum Brain Mapp ; 45(4): e26543, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38069537

RESUMEN

The brain's structural network follows a hierarchy that is described as rich club (RC) organization, with RC hubs forming the well-interconnected top of this hierarchy. In this study, we tested whether RC hubs are involved in the processing of hierarchically higher structures in stimulus sequences. Moreover, we explored the role of previously suggested cortical gradients along anterior-posterior and medial-lateral axes throughout the frontal cortex. To this end, we conducted a functional magnetic resonance imaging (fMRI) experiment and presented participants with blocks of digit sequences that were structured on different hierarchically nested levels. We additionally collected diffusion weighted imaging data of the same subjects to identify RC hubs. This classification then served as the basis for a region of interest analysis of the fMRI data. Moreover, we determined structural network centrality measures in areas that were found as activation clusters in the whole-brain fMRI analysis. Our findings support the previously found anterior and medial shift for processing hierarchically higher structures of stimuli. Additionally, we found that the processing of hierarchically higher structures of the stimulus structure engages RC hubs more than for lower levels. Areas involved in the functional processing of hierarchically higher structures were also more likely to be part of the structural RC and were furthermore more central to the structural network. In summary, our results highlight the potential role of the structural RC organization in shaping the cortical processing hierarchy.


Asunto(s)
Encéfalo , Conectoma , Humanos , Encéfalo/fisiología , Conectoma/métodos , Vías Nerviosas/fisiología , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética
10.
Psychol Med ; : 1-12, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38084608

RESUMEN

BACKGROUND: Convergent evidence has suggested atypical relationships between brain structure and function in major psychiatric disorders, yet how the abnormal patterns coincide and/or differ across different disorders remains largely unknown. Here, we aim to investigate the common and/or unique dynamic structure-function coupling patterns across major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). METHODS: We quantified the dynamic structure-function coupling in 452 patients with psychiatric disorders (MDD/BD/SZ = 166/168/118) and 205 unaffected controls at three distinct brain network levels, such as global, meso-, and local levels. We also correlated dynamic structure-function coupling with the topological features of functional networks to examine how the structure-function relationship facilitates brain information communication over time. RESULTS: The dynamic structure-function coupling is preserved for the three disorders at the global network level. Similar abnormalities in the rich-club organization are found in two distinct functional configuration states at the meso-level and are associated with the disease severity of MDD, BD, and SZ. At the local level, shared and unique alterations are observed in the brain regions involving the visual, cognitive control, and default mode networks. In addition, the relationships between structure-function coupling and the topological features of functional networks are altered in a manner indicative of state specificity. CONCLUSIONS: These findings suggest both transdiagnostic and illness-specific alterations in the dynamic structure-function relationship of large-scale brain networks across MDD, BD, and SZ, providing new insights and potential biomarkers into the neurodevelopmental basis underlying the behavioral and cognitive deficits observed in these disorders.

11.
Neuroimage Clin ; 40: 103546, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37988997

RESUMEN

The human brain comprises a large-scale structural network of regions and interregional pathways, including a selectively defined set of highly central and interconnected hub regions, often referred to as the "rich club", which may play a pivotal role in the integrative processes of the brain. A quintessential symptom of schizophrenia, auditory verbal hallucinations (AVH) have shown a decrease in severity following low-frequency repetitive transcranial magnetic stimulation (rTMS). However, the underlying mechanism of rTMS in treating AVH remains elusive. This study investigated the effect of low-frequency rTMS on the rich-club organization within the brain in patients diagnosed with schizophrenia who experience AVH using diffusion tensor imaging data. Through by constructing structural connectivity networks, we identified several critical rich hub nodes, which constituted a rich-club subnetwork, predominantly located in the prefrontal cortices. Notably, our findings revealed enhanced connection strength and density within the rich-club subnetwork following rTMS treatment. Furthermore, we found that the decreased connectivity within the subnetwork components, including the rich-club subnetwork, was notably enhanced in patients following rTMS treatment. In particular, the increased connectivity strength of the right median superior frontal gyrus, which functions as a critical local bridge, with the right postcentral gyrus exhibited a significant correlation with improvements in both positive symptoms and AVH. These findings provide valuable insights into the role of rTMS in inducing reorganizational changes within the rich-club structural network in schizophrenia and shed light on potential mechanisms through which rTMS may alleviate AVH.


Asunto(s)
Esquizofrenia , Sustancia Blanca , Humanos , Estimulación Magnética Transcraneal/métodos , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/terapia , Sustancia Blanca/diagnóstico por imagen , Imagen de Difusión Tensora , Alucinaciones/diagnóstico por imagen , Alucinaciones/etiología , Alucinaciones/terapia
12.
Neuroimage Clin ; 40: 103536, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37944396

RESUMEN

OBJECTIVE: The purpose of this study was to assess the differences of topological characteristic and rich club organization between temporal lobe epilepsy (TLE) patients with focal seizure (FS) only and those with focal to bilateral tonic-clonic seizures (FBTCS). METHODS: We recruited 130 unilateral TLE patients, of which 57 patients with FS only and 73 patients with both FS and FBTCS, and 68 age- and gender-matched healthy controls (HC). Whole-brain networks were constructed based on diffusion weighted imaging data. Graph theory was applied to quantify the topological network metrics and rich club organization. Network-based statistic (NBS) analysis was administered to investigate the difference in edge-wise connectivity strength. The non-parametric permutation test was applied to evaluate the differences between groups. Benjamini-Hochberg FDR at the alpha of 5% was carried out for multiple comparations. RESULTS: In comparison with HC, both the FS and FBTCS group displayed a significant reduction in whole-brain connectivity strength and global efficiency. The FBTCS group showed lower connectivity strength both in the rich club and feeder connections compared to HC. The FS group had lower connectivity strength in the feeder and local connections compared to HC. NBS analysis revealed a wider range of decreased connectivity strength in the FBTCS group, involving 90% of the rich club regions, mainly affecting temporal-subcortical, frontal-parietal, and frontal-temporal lobe, the majority decreasing connections were between temporal lobe and stratum. While the decreased connectivity strength in the FS group were relatively local, involving 50% of rich club regions, mainly concentrated on the temporal-subcortical lobe. CONCLUSIONS: Network integration was reduced in TLE. TLE with FBTCS selectively disrupted the rich club regions, while TLE with FS only were more likely to affect the non-rich club regions, emphasizing the contribution of rich club organization to seizure generalization.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Imagen por Resonancia Magnética , Convulsiones/diagnóstico por imagen , Encéfalo , Lóbulo Temporal/diagnóstico por imagen
13.
Cereb Cortex ; 33(24): 11570-11581, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-37851710

RESUMEN

Facial palsy therapies based on cortical plasticity are in development, but facial synkinesis progress is limited. Studying neural plasticity characteristics, especially network organization and its constitutive elements (nodes/edges), is the key to overcome the bottleneck. We studied 55 participants (33 facial synkinesis patients, 22 healthy controls) with clinical assessments, functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI). We analyzed rich-club organization and metrics of structural brain networks (rich-club coefficients, strength, degree, density, and efficiency). Functional brain network metrics, including functional connectivity and its coupling with the structural network, were also computed. Patients displayed reduced strength and density of rich-club nodes and edges, as well as decreased global efficiency. All nodes exhibited decreased nodal efficiency in patients. Patients had significantly increased functional connectivity and decreased structural-functional coupling strength in rich-club nodes, rich-club edges, and feeder edges. Our study indicates that facial synkinesis patients have weakened structural connections but enhanced functional transmission from rich-club nodes. The loss of connections and efficiency in structural network may trigger compensatory increases in functional connectivity of rich-club nodes. Two potential biomarkers, rich-club edge density and structural-functional coupling strength, may serve as indicators of disease outcome. These findings provide valuable insights into synkinesis mechanisms and offer potential targets for cortical intervention.


Asunto(s)
Imagen de Difusión Tensora , Sincinesia , Humanos , Sincinesia/diagnóstico por imagen , Sincinesia/patología , Encéfalo , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen
14.
Brain Behav ; 13(10): e3198, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37680015

RESUMEN

INTRODUCTION: It has been suggested that the rich club organization in major depressive disorder (MDD) was altered. However, it remained unclear whether the rich club organization could be served as a biomarker that predicted the improvement of clinical symptoms in MDD. METHODS: The current study included 29 mild or moderate patients with MDD, who were grouped into a treatment group (receiving cognitive behavioral therapy or real-time fMRI feedback treatment) and a no-treatment group. Resting-state MRI scans were obtained for all participants. Graph theory was employed to investigate the treatment-related changes in network properties and rich club organization. RESULTS: We found that patients in the treatment group had decreased depressive symptom scores and enhanced rich club connectivity following the nonpharmacological treatment. Moreover, the changes in rich club connectivity were significantly correlated with the changes in depressive symptom scores. In addition, the nonpharmacological treatment on patients with MDD increased functional connectivity mainly among the salience network, default mode network, frontoparietal network, and subcortical network. Patients in the no-treatment group did not show significant changes in depressive symptom scores and rich club organization. CONCLUSIONS: Those results suggested that the remission of depressive symptoms after nonpharmacological treatment in MDD patients was associated with the increased efficiency of global information processing.

15.
Front Aging Neurosci ; 15: 1209027, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771522

RESUMEN

Background and objectives: Alzheimer's disease (AD) is more prevalent in women than in men; however, there is a discrepancy in research on sex differences in AD. The human brain is a large-scale network with hub regions forming a central core, the rich-club, which is vital to cognitive functions. However, it is unknown whether alterations in the rich-clubs in AD differ between men and women. We aimed to investigate sex differences in the rich-club organization in the brains of patients with AD. Methods: In total, 260 cognitively unimpaired individuals with negative amyloid positron emission tomography (PET) scans, 281 with prodromal AD (mild cognitive impairment due to AD) and 285 with AD dementia who confirmed with positive amyloid PET scans participated in the study. We obtained high-resolution T1-weighted and diffusion tensor images and performed network analysis. Results: We observed sex differences in the rich-club and feeder connections in patients with AD, suggesting lower structural connectivity strength in women than in men. We observed a significant group-by-sex interaction in the feeder connections, particularly in the thalamus. In addition, the connectivity strength of the thalamus in the feeder connections was significantly correlated with general cognitive function in only men with prodromal AD and women with AD dementia. Conclusion: Our findings provide important evidence for sex-specific alterations in the structural brain network related to AD.

16.
Front Psychiatry ; 14: 1226143, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720902

RESUMEN

Introduction: Convergent evidence has demonstrated a shared rich-club reorganization across multiple major psychiatric conditions. However, previous studies assessing altered functional couplings between rich-club regions have typically focused on the mean time series from entire functional magnetic resonance imaging (fMRI) scanning session, neglecting their time-varying properties. Methods: In this study, we aim to explore the common and/or unique alterations in the temporal variability of rich-club organization among schizophrenia (SZ), bipolar disorder (BD), and attention deficit/hyperactivity disorder (ADHD). We employed a temporal rich-club (TRC) approach to quantitatively assess the propensity of well-connected nodes to form simultaneous and stable structures in a temporal network derived from resting-state fMRI data of 156 patients with major psychiatric disorders (SZ/BD/ADHD = 71/45/40) and 172 healthy controls. We executed the TRC workflow at both whole-brain and subnetwork scales across varying network sparsity, sliding window strategies, lengths and steps of sliding windows, and durations of TRC coefficients. Results: The SZ and BD groups displayed significantly decreased TRC coefficients compared to corresponding HC groups at the whole-brain scale and in most subnetworks. In contrast, the ADHD group exhibited reduced TRC coefficients in longer durations, as opposed to shorter durations, which markedly differs from the SZ and BD groups. These findings reveal both transdiagnostic and illness-specific patterns in temporal variability of rich-club organization across SZ, BD, and ADHD. Discussion: TRC may serve as an effective metric for detecting brain network disruptions in particular states, offering novel insights and potential biomarkers into the neurobiological basis underpinning the behavioral and cognitive deficits observed in these disorders.

17.
Brain Res Bull ; 202: 110714, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37495024

RESUMEN

White matter hyperintensities (WMH) are widely observed in older adults and are closely associated with cognitive impairment. However, the underlying neuroimaging mechanisms of WMH-related cognitive dysfunction remain unknown. This study recruited 61 WMH individuals with mild cognitive impairment (WMH-MCI, n = 61), 48 WMH individuals with normal cognition (WMH-NC, n = 48) and 57 healthy control (HC, n = 57) in the final analyses. We constructed morphological networks by applying the Kullback-Leibler divergence to estimate interregional similarity in the distributions of regional gray matter volume. Based on morphological networks, graph theory was applied to explore topological properties, and their relationship to WMH-related cognitive impairment was assessed. There were no differences in small-worldness, global efficiency and local efficiency. The nodal local efficiency, degree centrality and betweenness centrality were altered mainly in the limbic network (LN) and default mode network (DMN). The rich-club analysis revealed that WMH-MCI subjects showed lower average strength of the feeder and local connections than HC (feeder connections: P = 0.034; local connections: P = 0.042). Altered morphological connectivity mediated the relationship between WMH and cognition, including language (total indirect effect: -0.010; 95 % CI: -0.024, -0.002) and executive (total indirect effect: -0.010; 95 % CI: -0.028, -0.002) function. The altered topological organization of morphological networks was mainly located in the DMN and LN and was associated with WMH-related cognitive impairment. The rich-club connection was relatively preserved, while the feeder and local connections declined. The results suggest that single-subject morphological networks may capture neurological dysfunction due to WMH and could be applied to the early imaging diagnostic protocol for WMH-related cognitive impairment.


Asunto(s)
Disfunción Cognitiva , Sustancia Blanca , Anciano , Humanos , Cognición , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen
18.
Front Neurol ; 14: 1135305, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251238

RESUMEN

Introduction: Childhood absence epilepsy (CAE) is a well-known pediatric epilepsy syndrome. Recent evidence has shown the presence of a disrupted structural brain network in CAE. However, little is known about the rich-club topology. This study aimed to explore the rich-club alterations in CAE and their association with clinical characteristics. Methods: Diffusion tensor imaging (DTI) datasets were acquired in a sample of 30 CAE patients and 31 healthy controls. A structural network was derived from DTI data for each participant using probabilistic tractography. Then, the rich-club organization was examined, and the network connections were divided into rich-club connections, feeder connections, and local connections. Results: Our results confirmed a less dense whole-brain structural network in CAE with lower network strength and global efficiency. In addition, the optimal organization of small-worldness was also damaged. A small number of highly connected and central brain regions were identified to form the rich-club organization in both patients and controls. However, patients exhibited a significantly reduced rich-club connectivity, while the other class of feeder and local connections was relatively spared. Moreover, the lower levels of rich-club connectivity strength were statistically correlated with disease duration. Discussion: Our reports suggest that CAE is characterized by abnormal connectivity concentrated to rich-club organizations and might contribute to understanding the pathophysiological mechanism of CAE.

19.
Front Aging Neurosci ; 15: 1153496, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122379

RESUMEN

Objective: Accumulating evidence shows that cognitive impairment (CI) in chronic heart failure (CHF) patients is related to brain network dysfunction. This study investigated brain network structure and rich-club organization in chronic heart failure patients with cognitive impairment based on graph analysis of diffusion tensor imaging data. Methods: The brain structure networks of 30 CHF patients without CI and 30 CHF patients with CI were constructed. Using graph theory analysis and rich-club analysis, changes in global and local characteristics of the subjects' brain network and rich-club organization were quantitatively calculated, and the correlation with cognitive function was analyzed. Results: Compared to the CHF patients in the group without CI group, the CHF patients in the group with CI group had lower global efficiency, local efficiency, clustering coefficient, the small-world attribute, and increased shortest path length. The CHF patients with CI group showed lower nodal degree centrality in the fusiform gyrus on the right (FFG.R) and nodal efficiency in the orbital superior frontal gyrus on the left (ORB sup. L), the orbital inferior frontal gyrus on the left (ORB inf. L), and the posterior cingulate gyrus on the right (PCG.R) compared with CHF patients without CI group. The CHF patients with CI group showed a smaller fiber number of edges in specific regions. In CHF patients with CI, global efficiency, local efficiency and the connected edge of the orbital superior frontal gyrus on the right (ORB sup. R) to the orbital middle frontal gyrus on the right (ORB mid. R) were positively correlated with Visuospatial/Executive function. The connected edge of the orbital superior frontal gyrus on the right to the orbital inferior frontal gyrus on the right (ORB inf. R) is positively correlated to attention/calculation. Compared with the CHF patients without CI group, the connection strength of feeder connection and local connection in CHF patients with CI group was significantly reduced, although the strength of rich-club connection in CHF patients complicated with CI group was decreased compared with the control, there was no statistical difference. In addition, the rich-club connection strength was related to the orientation (direction force) of the Montreal cognitive assessment (MoCA) scale, and the feeder and local connection strength was related to Visuospatial/Executive function of MoCA scale in the CHF patients with CI. Conclusion: Chronic heart failure patients with CI exhibited lower global and local brain network properties, reduced white matter fiber connectivity, as well as a decreased strength in local and feeder connections in key brain regions. The disrupted brain network characteristics and connectivity was associated with cognitive impairment in CHF patients. Our findings suggest that impaired brain network properties and decreased connectivity, a feature of progressive disruption of brain networks, predict the development of cognitive impairment in patients with chronic heart failure.

20.
Cereb Cortex ; 33(12): 7727-7740, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36928480

RESUMEN

Auditory processing disorder (APD) is a listening impairment that some school-aged children may experience despite having normal peripheral hearing. Recent resting-state functional magnetic resonance imaging (MRI) has revealed an alteration in regional functional brain topology in children with APD. However, little is known about the structural organization in APD. We used diffusion MRI data to investigate the structural connectome of 58 children from 8 to 14 years old diagnosed with APD (n = 29) and children without hearing complaints (healthy controls, HC; n = 29). We investigated the rich-club organization and structural connection differences between groups. The APD group showed similar rich-club organization and edge-wise connection compared with the HC group. However, at the regional level, we observed increased average path length (APL) and betweenness centrality in the right inferior parietal lobule and inferior precentral gyrus, respectively, in the APD group. Only HCs demonstrated a positive association between APL and the listening-in-spatialized-noise-sentences task in the left orbital gyrus. In line with previous findings, the current results provide evidence for altered structural networks at the regional level in the APD group, suggesting the involvement of multimodal deficits and a role for structure-function alteration in the listening difficulties of children with APD.


Asunto(s)
Trastornos de la Percepción Auditiva , Conectoma , Humanos , Niño , Adolescente , Trastornos de la Percepción Auditiva/diagnóstico por imagen , Trastornos de la Percepción Auditiva/patología , Encéfalo , Percepción Auditiva , Imagen de Difusión por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA