Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.399
Filtrar
1.
Arq. bras. oftalmol ; 88(1): e2023, 2025. tab
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1568852

RESUMEN

ABSTRACT Purpose: This study aimed to analyze variations in intraoperative corneal thickness during corneal cross-linking in patients with keratoconus and to investigate its possible correlation with presurgical maximal keratometry (Kmax) and pachymetry. Methods: This was a prospective case series. We used a method similar to the Dresden protocol, with the application of hydroxypropyl methylcellulose 0.1% hypo-osmolar riboflavin in corneas between 330 and 400 µm after epithelium removal. Corneal thickness was measured using portable calipers before and immediately after epithelium removal, and 30 and 60 min after the procedure. Results: The 30 patients in this study were followed up for one year. A statistically significant difference was observed in pachymetry values during the intraoperative period (p<0.0001) and an increase of 3.05 µm (95%C1: 0.56-5.54) for each diopter was seen after epithelium removal (p0.019). We found an average Kmax difference of —2.12 D between men and women (p0.013). One year after treatment, there was a statistically significant reduction in pachymetry (p<0.0001) and Kmax (p0.0170) values. Conclusions: A significant increase in pachymetry measurements was seen during the procedure, and most patients showed a regression in Kmax and pachymetry values one year after surgery.

2.
Meat Sci ; 219: 109664, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39288547

RESUMEN

Light wavelengths that induce meat discoloration and the photoreceptors in the meat were studied. We investigated the effects of the light wavelength on the oxidation rate of myoglobin (Mb) by exposing Mb extracts or model solutions containing Mb to light at specific wavelengths with a bandwidth of 5 nm using a fluorescence spectrophotometer. The wavelengths examined comprised 385, 415, 445, 460, 490, 525, 555, 580, 605, 630,660, and 750 nm. In the Mb extracts, Mb oxidation was induced through exposure to the light at 445 and 580-605 nm; Mb was insensitive to light at 445 nm. Mitochondria, containing cytochrome a and cytochrome a3 with absorption peaks at 448 and 600 nm, and riboflavin with fluorescence at 450 nm were studied as 445 nm receptors. Mitochondria significantly oxidized Mb via cytochrome c oxidation through complex IV activity; however, no 445 nm-specific photo sensitivity effects were observed. In contrast, riboflavin increased the Mb oxidation rate induced via exposure to the light at 450 nm in a concentration-dependent manner (minimum concentration: 38.4 µg L-1). While native mitochondria did not show 445 nm-specific photosensitivity effects on Mb, supernatants of heated mitochondria conferred 445 nm-wavelength sensitivity to Mb. Riboflavin concentration in this supernatant was 182 ± 60 µg L-1. The Mb photosensitivity spectrum with 473 µg L-1 riboflavin had two peaks at 445 nm and 580 nm, which were similar to those of Mb extract. These results suggest that mitochondrial damage affects the meat discoloration through the release of cytochrome c and riboflavin.

3.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273377

RESUMEN

Riboflavin, an essential vitamin for humans, is extensively used in various industries, with its global demand being met through fermentative processes. Hyphopichia wangnamkhiaoensis is a novel dimorphic yeast species capable of producing riboflavin. However, the nutritional factors affecting riboflavin production in this yeast species remain unknown. Therefore, we conducted a kinetic study on the effects of various nutritional factors-carbon and energy sources, nitrogen sources, vitamins, and amino acids-on batch riboflavin production by H. wangnamkhiaoensis. Batch experiments were performed in a bubble column bioreactor to evaluate cell growth, substrate consumption, and riboflavin production. The highest riboflavin production was obtained when the yeast growth medium was supplemented with glucose, ammonium sulfate, biotin, and glycine. Using these chemical components, along with the mineral salts from Castañeda-Agullo's culture medium, we formulated a novel, low-cost, and effective culture medium (the RGE medium) for riboflavin production by H. wangnamkhiaoensis. This medium resulted in the highest levels of riboflavin production and volumetric productivity, reaching 16.68 mg/L and 0.713 mg/L·h, respectively, within 21 h of incubation. These findings suggest that H. wangnamkhiaoensis, with its shorter incubation time, could improve the efficiency and cost-effectiveness of industrial riboflavin production, paving the way for more sustainable production methods.


Asunto(s)
Medios de Cultivo , Riboflavina , Riboflavina/biosíntesis , Riboflavina/metabolismo , Medios de Cultivo/química , Cinética , Reactores Biológicos , Fermentación , Nitrógeno/metabolismo , Saccharomycetales/metabolismo , Saccharomycetales/crecimiento & desarrollo , Vitaminas/metabolismo , Glucosa/metabolismo
4.
Exp Eye Res ; : 110095, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284506

RESUMEN

The purpose of this study is to investigate whether the iontophoresis-assisted riboflavin delivery to posterior sclera with less delivery time, can achieve the same riboflavin permeation efficiency as the passive soaking way, and its effect on the mechanical properties of posterior sclera for accelerated scleral collagen cross-linking (A-SXL). In this study, 0.1% riboflavin solution was applied into the posterior sclera of porcine eyes either by the iontophoresis-assisted or passive soaking method, with delivery time of 5, 7.5, 10, 12.5, 15, 17.5, and 20 minutes, respectively.The fluorescence intensity and the distribution of riboflavin concentration in the 10 µm frozen sections of the sclera were evaluated by fluorescence inverted microscope. The posterior sclera with riboflavin treatment through either the iontophoresis-assisted or the passive soaking method for different durations ranging from 5 to 20 minutes was treated with ultraviolet A (UVA) irradiation at an intensity of 10 mW/cm2 for 9 minutes. The elastic modulus was determined at the physiological strain level using the uniaxial tensile test after ASXL. The results showed that the fluorescence intensity of riboflavin increased by prolonging the delivery time in both the iontophoresis and passive soaking groups, and the permeation depth of riboflavin remained constant over 15 minutes. The fluorescence intensity in the iontophoresis group was significantly higher than in the passive soaking group at 12.5 minutes and 15 minutes, respectively. The elastic modulus at 12.5 minutes in the iontophoresis group was significantly higher than in the passive soaking group at the same delivery time and showed no significant difference compared to the passive soaking group at 20 minutes. In conclusion, it indicated that iontophoresis-assisted delivery could not only shorten the surgery time but also achieve similar mechanical performance to the passive soaking method in ASXL.

5.
Mol Pharm ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279392

RESUMEN

The limited progress in treatment options and the alarming survival rates in advanced melanoma emphasize the significant research importance of early melanoma diagnosis. RFVT3, a crucial protein at the core of energy metabolism reprogramming in melanoma, might play a pivotal role in early detection. In this study, [68Ga]Ga-NOTA-RF, based on riboflavin (RF), was rationally developed and validated, serving as an innovative tool for positron emission tomography (PET) imaging of RFVT3 expression in melanoma. The in vitro assays of RFVT3 specificity of [68Ga]Ga-NOTA-RF were performed on B16F10 melanoma cells. Then, PET imaging of melanoma was investigated in B16F10 allograft mouse models with varying volumes. Biodistribution studies are used to clarify the behavior of [68Ga]Ga-NOTA-RF in vivo. [68Ga]Ga-NOTA-RF was obtained with high radiochemical purity (>95%). A significant uptake (37.79 ± 6.86%, n = 4) of [68Ga]Ga-NOTA-RF was observed over time in B16F10 melanoma cells, which was significantly inhibited by RFVT3 inhibitors RF or methylene blue (MB), demonstrating the specific binding of [68Ga]Ga-NOTA-RF. At 60 min postinjection, the tumor-to-muscle (T/M) ratio of [68Ga]Ga-NOTA-RF was 4.03 ± 0.34, higher than that of the RF-blocked group (2.63 ± 0.19) and MB-blocked group (2.14 ± 0.20). The T/M ratios for three distinct tumor volumes-small (5 mm), medium (10 mm), and large (15 mm) were observed to be 5.25 ± 0.28, 4.03 ± 0.34, and 3.19 ± 0.55, respectively. The expression of RFVT3 was validated by immunohistochemical staining in various tumor models, with small B16F10 tumors exhibiting the highest expression. [68Ga]Ga-NOTA-RF demonstrates promising properties for the early diagnosis of melanoma and the examination of minute metastatic lesions, indicating its potential to assist in guiding clinical treatment decisions.

6.
Physiol Behav ; 287: 114693, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39255868

RESUMEN

Metabolic adaptations early in life can drive energy expenditure towards brain and physical development, with less emphasis on body mass gain and somatic growth. Dietary or pharmacological manipulations can influence these processes, but to date, the effects provided by riboflavin have not been studied. The study aimed to evaluate the effects of neonatal treatment with different doses of riboflavin on sensorimotor and somatic development in rodents. Based on this, the following experimental groups were formed: Control (C, 0 mg/kg), Riboflavin 1 (R1, 1 mg/kg), Riboflavin 2 (R2, 10 mg/kg) and Riboflavin 3 (R3, 100 mg/kg). Treatment with 100 mg/kg riboflavin anticipated the reflex ontogeny of righting, cliff aversion, negative geotaxis, and free-fall righting. Intervention with 10 and 100 mg/kg of riboflavin anticipated the reflex maturation of vibrissae placement. Eye-opening, upper incisor eruption, and lower incisor eruption reached maturational age more quickly for animals treated with 100 mg/kg, while caudal growth and body weight gain were reduced from the second week of treatment, for groups R2 and R3. Pearson's correlation analysis indicated a positive association between the administration of high doses of riboflavin and murine growth in the first week of treatment. There was, however, a negative association between treatment with a high dose of riboflavin and growth in the second week of administration, coinciding with a reduction in body weight gain in the R3 group. Treatment with 100 mg/kg of riboflavin also reduced energy expenditure parameters in the open field and catwalk. Although high-dose treatment stimulates the physiological plasticity of the CNS and reduces weight gain, hepatic parameters were preserved, highlighting the participation of the liver in the supply of fatty acids for neural maturation. Furthermore, hypothalamic NRF-1 expression was increased in the R3 group inversely to the reduction in weight gain. Our results suggest that high-dose riboflavin stimulates sensorimotor and somatic development and reduces the energy invested in growth, body weight gain, and locomotor activity, possibly involving NRF-1 gene modulation in the hypothalamus.

7.
Adv Mater ; : e2408136, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246198

RESUMEN

In this study, a novel customized corneal cross-linking (CXL) treatment is explored that utilizes microneedles (MNs) for targeted riboflavin (RF) administration prior to the CXL procedure. Unlike the conventional "one-size-fits-all" approach, this protocol offers an option for more precise and efficacious treatment. To simulate a customized corneal crosslinking technique, four distinct microneedle (MN) molds designs, including circular, semi-circular, annular and butterfly shaped, are crafted for loading an optimized RF-hyaluronic acid solution and for the subsequent fabrication of MN arrays with varying morphologies. These MNs can gently puncture the corneal epithelium while preserving the integrity of the underlying stromal layer. Following the application of these microneedles, RF solution is replenished to enhance the RF content within the stroma through the punctures created by the MNs, resulting in exceptional customized corneal cross-linking effects that are comparable to the conventional epi-off CXL protocol. Additionally, it flattened the corneal curvature within the treated zone and facilitated rapid postoperative recovery of corneal tissue. These findings suggest that the integration of customized microneedle RF delivery with corneal crosslinking technology represents a potential novel treatment modality, holding promise for the tailored treatment of corneal pathologies, and offering a more precise and efficient alternative to traditional methods.

8.
Free Radic Biol Med ; 224: 418-435, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241988

RESUMEN

Riboflavin deficiency (RD) induces liver damage, abnormal embryonic development, and high mortality. We hypothesized that the phenotype could be rescued by inhibiting ER stress. The objectives of the present study were to investigate the underlying molecular mechanisms of RD-induced embryonic defects using in vitro and in vivo models. Primary duck embryonic hepatocytes were treated with an ER stress inhibitor (4-PBA) or transfected with CHOP siRNA, and cultured in RD medium and riboflavin-sufficient (CON) medium for 8 days. Laying ducks (n = 20 cages/diet, 1 bird/cage) were fed an RD diet or CON diet for 14 wk, and the eggs were collected for hatching. At day 7 of incubation, the fertilized RD eggs were injected with or without 4-PBA into the yolk. RD decreased cell number and cell viability compared to the CON group, induced oxidative stress and apoptosis in primary duck embryonic hepatocytes. However, after being treated with an ER stress inhibitor (4-PBA) or transfected with CHOP siRNA, the apoptosis rate in RD hepatocytes decreased by 60.6 % and 86.1 %, respectively, being equal to the CON. These results indicated that RD-induced hepatocyte apoptosis is mediated by ER stress and the CHOP pathway. In vivo, RD embryos showed low hatchability, abnormal development, liver damage, ER stress, and apoptosis compared to the CON group. However, 4-PBA administration, as a model of ER stress inhibition, substantially restored embryonic development and alleviated liver damage in the RD group, including ER stress and apoptosis. Notably, hatchability in the RD group increased from 21.7 % to 72.7 % after 4-PBA treatment, though it remained less than the CON group (87.7 %). These results implicated ER stress-CHOP-apoptosis pathway as molecular mechanisms underlying RD-induced abnormal embryonic development and death, this target with potential for therapy or intervention.

9.
Front Cell Neurosci ; 18: 1440555, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113759

RESUMEN

Introduction: Riboflavin transporter deficiency type 2 (RTD2) is a rare neurodegenerative autosomal recessive disease caused by mutations in the SLC52A2 gene encoding the riboflavin transporters, RFVT2. Riboflavin (Rf) is the precursor of FAD (flavin adenine dinucleotide) and FMN (flavin mononucleotide), which are involved in different redox reactions, including the energetic metabolism processes occurring in mitochondria. To date, human induced pluripotent stem cells (iPSCs) have given the opportunity to characterize RTD2 motoneurons, which reflect the most affected cell type. Previous works have demonstrated mitochondrial and peroxisomal altered energy metabolism as well as cytoskeletal derangement in RTD2 iPSCs and iPSC-derived motoneurons. So far, no attention has been dedicated to astrocytes. Results and discussion: Here, we demonstrate that in vitro differentiation of astrocytes, which guarantee trophic and metabolic support to neurons, from RTD2 iPSCs is not compromised. These cells do not exhibit evident morphological differences nor significant changes in the survival rate when compared to astrocytes derived from iPSCs of healthy individuals. These findings indicate that differently from what had previously been documented for neurons, RTD2 does not compromise the morpho-functional features of astrocytes.

10.
Discov Med ; 36(187): 1588-1599, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190374

RESUMEN

BACKGROUND: Traumatic brain injury (TBI), which is the brain impairment and lesion caused by the external force injuring the head and the underlying brain, can cause pediatric death, disability, neurological disorders, and even lifelong disability. This study was to explore the effect of riboflavin (RF) on neurological rehabilitation and functional recovery after TBI. METHODS: The rat models of TBI were constructed by treating rats with controlled cortical impact (CCI). By treating TBI rats with RF, we investigated whether the administration of RF would affect the sensorimotor function and cognitive ability recovery through adhesive removal test, modified neurological severity score (mNSS), corner test, wire-grip test and the Morris water maze. The effects of RF on lesion volume and water content were investigated using hematoxylin and eosin (H&E) staining and wet-dry method. The Nissl staining and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining were used to demonstrate the effect of RF on neural apoptosis. Inflammation-related cytokines of interleukin (IL)-6, IL-1ß, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-ß1 were measured by enzyme-linked immunosorbent assay (ELISA) to evaluate the effect of RF on neuroinflammation. The impact of RF on oxidative stress was assessed by measuring malondialdehyde (MDA) content and superoxide dismutase (SOD) activity, and the platelet endothelial cell adhesion molecule-1 (CD31) staining for observing vessel density, the reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) for measuring vascular endothelial growth factor (VEGF) mRNA expression and western blot for VEGF protein expression were used for evaluated angiogenesis. RESULTS: The administration of RF could facilitate the recovery of neurological function by promoting the recovery of sensorimotor function and cognitive ability (p < 0.05). Furthermore, RF could reduce the lesion volume and water content after TBI and ameliorate neural apoptosis, neuroinflammation, and oxidative stress (p < 0.05). Finally, RF increased vessel density (p < 0.01) and VEGF levels (p < 0.01) in brain tissues after TBI, promoting angiogenesis. CONCLUSION: RF benefits neurological rehabilitation after TBI by promoting neurological function recovery, ameliorating the pathogenesis after TBI, and facilitating brain vascular remodeling. These findings provide a novel mechanism for RF treating pediatric TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Riboflavina , Animales , Ratas , Lesiones Traumáticas del Encéfalo/rehabilitación , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/fisiopatología , Riboflavina/farmacología , Riboflavina/uso terapéutico , Masculino , Humanos , Ratas Sprague-Dawley , Niño , Modelos Animales de Enfermedad , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Citocinas/metabolismo , Recuperación de la Función/efectos de los fármacos
11.
Sci Total Environ ; 950: 175372, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39117231

RESUMEN

Microcystis and bacteria always live together in the mucilage of Microcystis colonies. Extracellular electrons between Microcystis and bacteria can be translated from bioenergy to electric energy. Here, photosynthetic microbial fuel cells (PMFCs) were constructed to make clear the electron transfer mechanism between Microcystis and bacteria. A remarkable enhancement of current density with 2.5-fold change was detected in the coculture of Microcystis and bacteria than pure culture of Microcystis. Transcriptome analyses showed that photosynthesis efficiency of Microcystis was upregulated and may release more electron to improve extracellular electron transfer rate. Significant increase on oxidative phosphorylation of bacterial community was observed according to meta-transcriptome. Bacterial electrons were transferred out of cell membranes by enhancing VgrG and IcmF copies though the type II bacterial secretion system. Not only Microcystis and bacteria attached with each other tightly by filamentous, but also more gene copies relating to pilin and riboflavin production were detected from Microcystis culture. A confirmatory experiment found that riboflavin can upregulate the electron transfer and current density by adding riboflavin into cocultures. Thus, the direct contact and indirect interspecies electron transfer processes between Microcystis and bacteria were observed. Results enlarge knowledge for activities of Microcystis colonies in cyanobacterial blooms, and provide a better understanding for energy transformation.


Asunto(s)
Microcystis , Transcriptoma , Microcystis/genética , Microcystis/fisiología , Transporte de Electrón , Fotosíntesis , Bacterias/genética , Bacterias/metabolismo , Microbiota
12.
mSphere ; : e0034724, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189775

RESUMEN

Flavin adenine dinucleotide (FAD) is an essential cofactor for numerous flavoenzymes present in all living organisms. The biosynthesis of FAD from riboflavin involves two sequential reactions catalyzed by riboflavin kinase and flavin adenine dinucleotide synthase (FADS). Entamoeba histolytica, the protozoan parasite responsible for amebiasis, apparently lacks a gene encoding FADS that share similarity with bacterial and eukaryotic canonical FADS, yet it can synthesize FAD. In this study, we have identified the gene responsible for FADS and thoroughly characterized physiological and biochemical properties of FADS from E. histolytica. Phylogenetic analysis revealed that the gene was likely laterally transferred from archaea. The kinetic properties of recombinant EhFADS were consistent with the notion that EhFADS is of archaeal origin, exhibiting KM and kcat values similar to those of the arachaeal enzyme while significantly differing from the human counterpart. Repression of gene expression of EhFADS by epigenetic gene silencing caused substantial reduction in FAD levels and parasite growth, underscoring the importance of EhFADS for the parasite. Furthermore, we demonstrated that EhFADS gene silencing reduced thioredoxin reductase activity, which requires FAD as a cofactor and makes the ameba more susceptible to metronidazole. In summary, this study unveils unique evolutionary and biochemical features of EhFADS and underscores its significance as a promising drug target in combating human amebiasis.IMPORTANCEFAD is important for all forms of life, yet its role and metabolism are still poorly studied in E. histolytica, the protozoan parasite causing human amebiasis. Our study uncovers the evolutionary unique key enzyme, archaeal-type FADS for FAD biosynthesis from E. histolytica for the first time. Additionally, we showed the essentiality of this enzyme for parasite survival, highlighting its potential as target for drug development against E. histolytica infections.

13.
Food Chem ; 459: 140259, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089197

RESUMEN

2-Aminoacetophenone is an off-flavor that can result from tryptophan degradation via riboflavin-photosensitized reaction. This study investigates the impact of light exposure, provided by a UV-C source, oxygen concentrations and transition metals on the formation of 2-aminoacetophenone in model wine containing tryptophan and riboflavin. Irrespective of oxygen and transition metals, >85% of tryptophan were degraded via first-order kinetics to unknown product(s). However, longer light exposure and more oxygen caused 2-aminoacetophenone concentrations to increase. Transition metals decelerated the 2-aminoacetophenone formation and acetaldehyde was formed suggesting photo-Fenton reaction occurred as a competitive reaction. The degradation rate of riboflavin inclined with less oxygen and in the presence of transition metals due to the depletion of oxygen by photo-Fenton reaction. Oxygen plays an important role in the regeneration of riboflavin and therefore must be seen as an intensifier for light-induced 2-aminoacetophenone formation. This paper provides new insights into riboflavin-photosensitized reactions.


Asunto(s)
Acetofenonas , Oxígeno , Riboflavina , Triptófano , Rayos Ultravioleta , Vino , Riboflavina/química , Triptófano/química , Vino/análisis , Acetofenonas/química , Oxígeno/química , Cinética , Elementos de Transición/química
14.
Curr Eye Res ; : 1-9, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090846

RESUMEN

PURPOSE: To comparatively evaluate the influence of different riboflavin formulations and soaking durations on the anterior segment optical coherence tomography (AS-OCT) findings following accelerated corneal crosslinking (ACXL) at 9 mW/cm2 for in progressive keratoconus. METHODS: In this prospective study, consecutive patients with progressive keratoconus were randomized into 4 groups. Group 1: hydroxypropyl methylcellulose (HPMC)-based riboflavin for 10 min; Group 2: HPMC-based riboflavin for 20 min; Group 3: dextran-based riboflavin (0.1%) for 30 min. Riboflavin soaking was followed by ultraviolet-A irradiation at 9 mW/cm2 for 10 min in all three groups. Group 4 underwent conventional CXL (CCXL) using Dresden protocol. The AS-OCT features of the crosslinked cornea were evaluated at postoperative month 1 and correlated to the clinical outcomes at postoperative month 12. RESULTS: The study enrolled 26 eyes of 26 patients in each group. In groups 1 and 2, the AS-OCT findings were similar (p > .05) and the demarcation lines depth (DLD) were deep as obtained following CCXL. The DLD was significantly shallower in group 3 compared to the other groups (p < .01). There were no between-group differences in regards to the visual, refractive, keratometric, and tomographic outcomes at postoperative month 12. No significant endothelial cell loss or any other clinically significant adverse event was encountered in any patient's eye at 12 months follow-up. CONCLUSION: Although structural variations were noted in the crosslinked cornea, DLDs observed following ACXL (9 mW/cm2) using HPMC-based solution for 10 or 20 min were similar to those observed following CCXL. Whereas, ACXL (9 mW/cm2) using dextran-based solution for 30 min resulted in the shallowest DLD. Despite these remodeling differences, the visual, refractive and tomographic outcomes of all groups were comparable at postoperative 1-year follow-up. Studies with a greater number of patients and longer follow-ups are required to establish any relation between AS-OCT characteristics of crosslinked cornea and ACXL efficacy.

15.
Int J Biol Macromol ; 278(Pt 1): 134392, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098675

RESUMEN

Leishmania donovani relies on specific vitamins and cofactors crucial for its survival and pathogenesis. Tailoring therapies to disrupt these pathways offers a promising strategy for the treatment of Visceral Leishmaniasis. Current treatment regimens are limited due to drug resistance and high costs. The dependency of Leishmania parasites on Vitamin B2 and its metabolic products is not known. In this study, we have biochemically and biophysically characterized a Vitamin B2 metabolism enzyme, riboflavin kinase from L. donovani (LdRFK) which converts riboflavin (vitamin B2) into flavin mononucleotide (FMN). Sequence comparison with human counterpart reflects 31.58 % identity only, thus opening up the possibility of exploring it as drug target. The rfk gene was cloned, expressed and the recombinant protein was purified. Kinetic parameters of LdRFK were evaluated with riboflavin and ATP as substrates which showed differential binding affinity when compared with the human RFK enzyme. Thermal and denaturant stability of the enzyme was evaluated. The rfk gene was overexpressed in the parasites and its role in growth and cell cycle was evaluated. In the absence of crystal structure, homology modelling and molecular dynamic simulation studies were performed to predict LdRFK structure. The data shows differences in substrate binding between human and parasite enzyme. This raises the possibility of exploring LdRFK for specific designing of antileishmanial molecules. Gene disruption studies can further validate its candidature as antileishmanial target.


Asunto(s)
Leishmania donovani , Fosfotransferasas (Aceptor de Grupo Alcohol) , Riboflavina , Leishmania donovani/enzimología , Leishmania donovani/genética , Riboflavina/metabolismo , Riboflavina/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Humanos , Cinética , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Especificidad por Sustrato , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Clonación Molecular , Estabilidad de Enzimas , Mononucleótido de Flavina/metabolismo
16.
Food Chem ; 461: 140889, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173254

RESUMEN

In this study, a UV-cured collagen-based film (C-P-H film) with high mechanical strength and antimicrobial properties was developed by riboflavin-mediated ultraviolet irradiation of collagen solution containing histidine-modified ε-polylysine. Fourier transform infrared analysis indicated that covalent cross-linking was formed between the collagen molecule and the histidine-grafted ε-polylysine. Compared with the pure collagen film, the C-P-H film containing 5 wt% histidine-modified ε-polylysine showed higher tensile strength (145.98 MPa), higher thermal denaturation temperature (76.5 °C), lower water vapor permeability (5.54 × 10-11 g m-1 s-1 Pa) and excellent antimicrobial activities against Escherichia coli and Staphylococcus aureus. In addition, the wrapping of the C-P-H film effectively inhibited bacterial growth of pork during storage time, successfully prolonging the shelf-life of pork by approximately 4 days compared to that of plastic wrap. These results suggested that collagen-based film grafted with histidine-modified ε-polylysine via riboflavin-mediated ultraviolet irradiation process had a great potential for pork preservation.


Asunto(s)
Colágeno , Escherichia coli , Embalaje de Alimentos , Conservación de Alimentos , Polilisina , Riboflavina , Staphylococcus aureus , Rayos Ultravioleta , Riboflavina/química , Riboflavina/farmacología , Animales , Colágeno/química , Colágeno/farmacología , Polilisina/química , Polilisina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Porcinos , Embalaje de Alimentos/instrumentación , Conservación de Alimentos/instrumentación , Conservación de Alimentos/métodos , Resistencia a la Tracción , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Antiinfecciosos/química
17.
J Mol Biol ; 436(20): 168734, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39097184

RESUMEN

The antibiotic roseoflavin is a riboflavin (vitamin B2) analog. One step of the roseoflavin biosynthetic pathway is catalyzed by the phosphatase RosC, which dephosphorylates 8-demethyl-8-amino-riboflavin-5'-phosphate (AFP) to 8-demethyl-8-amino-riboflavin (AF). RosC also catalyzes the potentially cell-damaging dephosphorylation of the AFP analog riboflavin-5'-phosphate also called "flavin mononucleotide" (FMN), however, with a lower efficiency. We performed X-ray structural analyses and mutagenesis studies on RosC from Streptomyces davaonensis to understand binding of the flavin substrates, the distinction between AFP and FMN and the catalytic mechanism of this enzyme. This work is the first structural analysis of an AFP phosphatase. Each monomer of the RosC dimer consists of an α/ß-fold core, which is extended by three specific elongated strand-to-helix sections and a specific N-terminal helix. Altogether these segments envelope the flavin thereby forming a novel flavin-binding site. We propose that distinction between AFP and FMN is provided by substrate-induced rigidification of the four RosC specific supplementary segments mentioned above and by an interaction between the amino group at C8 of AFP and the ß-carboxylate of D166. This key amino acid is involved in binding the ring system of AFP and positioning its ribitol phosphate part. Accordingly, site-specific exchanges at D166 disturbed the active site geometry of the enzyme and drastically reduced the catalytic activity. Based on the structure of the catalytic core we constructed a whole series of RosC variants but a disturbing, FMN dephosphorylating "killer enzyme", was not generated.


Asunto(s)
Mononucleótido de Flavina , Riboflavina , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/enzimología , Riboflavina/análogos & derivados , Riboflavina/biosíntesis , Riboflavina/metabolismo , Mononucleótido de Flavina/metabolismo , Cristalografía por Rayos X , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Fosforilación , Modelos Moleculares , Sitios de Unión , Conformación Proteica , Especificidad por Sustrato
18.
Sci Rep ; 14(1): 18252, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107469

RESUMEN

Brown fat is a therapeutic target for the treatment of obesity-associated metabolic diseases. However, nutritional intervention strategies for increasing the mass and activity of human brown adipocytes have not yet been established. To identify vitamins required for brown adipogenesis and adipocyte browning, chemical compound-induced brown adipocytes (ciBAs) were converted from human dermal fibroblasts under serum-free and vitamin-free conditions. Choline was found to be essential for adipogenesis. Additional treatment with pantothenic acid (PA) provided choline-induced immature adipocytes with browning properties and metabolic maturation, including uncoupling protein 1 (UCP1) expression, lipolysis, and mitochondrial respiration. However, treatment with high PA concentrations attenuated these effects along with decreased glycolysis. Transcriptome analysis showed that a low PA concentration activated metabolic genes, including the futile creatine cycle-related thermogenic genes, which was reversed by a high PA concentration. Riboflavin treatment suppressed thermogenic gene expression and increased lipolysis, implying a metabolic pathway different from that of PA. Thiamine treatment slightly activated thermogenic genes along with decreased glycolysis. In summary, our results suggest that specific B vitamins and choline are uniquely involved in the regulation of adipocyte browning via cellular energy metabolism in a concentration-dependent manner.


Asunto(s)
Adipocitos Marrones , Colina , Ácido Pantoténico , Riboflavina , Tiamina , Humanos , Riboflavina/farmacología , Ácido Pantoténico/farmacología , Ácido Pantoténico/metabolismo , Adipocitos Marrones/metabolismo , Adipocitos Marrones/efectos de los fármacos , Tiamina/farmacología , Tiamina/metabolismo , Colina/metabolismo , Colina/farmacología , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Lipólisis/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Termogénesis/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Glucólisis/efectos de los fármacos , Células Cultivadas , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
19.
Artículo en Inglés | MEDLINE | ID: mdl-39215849

RESUMEN

PURPOSE: Corneal crosslinking (CXL) procedures are the treatment of choice in halting progressive corneal ectasia and preserving visual acuity due to keratoconus. Pulsed crosslinking (P-CXL) was developed using intermittent pulsing ultraviolet (UV) light to mitigate the depletion of oxygen levels that occurs with continuous UV exposure in standard crosslinking protocols (C-CXL). This study aimed to explore the use of P-CXL in the treatment of keratoconus and determine whether the availability of oxygen in P-CXL carries superior efficacy outcomes as an alternative to C-CXL modalities. METHODS: This review was undertaken in accordance with PRISMA guidelines. A search of several databases conducted with two separate reviewers resulted in 29 papers meeting inclusion criteria for the review, 14 selected for meta-analysis. Primary outcomes assessed by the included papers included maximum keratometry (Kmax), corrected and uncorrected distance visual acuity (CDVA, UDVA), and secondary outcomes included central corneal thickness (CCT), endothelial cell count and demarcation line. Statistical analyses were carried out on Review Manager 5.4 and the meta-analysis employed a random-effects model, which estimated the weighted effect size of raw means using inverse variance weights. RESULTS: At 12 months P-CXL showed statistically significant reductions in Kmax (-0.75 D; p < 0.001) and improvement in CDVA (-0.10 logMAR; p < 0.001) compared to baseline. The meta-analysis of comparative studies determined that mean differences in Kmax, CDVA, UDVA, Kmean and CCT after 12 months were not statistically significant between pulsed and continuous crosslinking groups. CONCLUSIONS: Overall, P-CXL is effective in improving visual acuity and keratometry outcomes in keratoconus. The meta-analysis did not show a statistically significant difference in Kmax and CDVA between P-CXL and C-CXL, indicating a non-inferiority of P-CXL. However, findings of the meta-analysis are limited by the fact that different energy levels and exposure times were used for P-CXL in comparison to C-CXL in some studies, making it unsuitable to determine whether the efficacy of CXL is improved by the use of pulsed light. KEY MESSAGES: What is Known • Pulsed crosslinking (P-CXL) uses intermittent UV light to prevent oxygen depletion when using higher energy protocols, unlike continuous UV exposure in standard continuous crosslinking (C-CXL). • This should theoretically enhance the efficacy of the treatment by maintaining higher oxygen levels that are crucial to the cross-linking process. • There are no systematic reviews or meta-analyses directly comparing the efficacy or safety of P-CXL to C-CXL. What is New • Meta-analysis revealed differences in keratometry between P-CXL and C-CXL groups with equivalent fluence (7.2 J/cm2) at 12 months were not statistically significant (Kmax -0.04 dioptres; p = 0.84). • Meta-analysis revealed differences in visual acuity between P-CXL and C-CXL groups with equivalent fluence (7.2 J/cm2) at 12 months were not statistically significant (CDVA -0.01 logMAR letters; p = 0.57). • The use of intermittent pulsing in higher energy CXL protocols renders statistically similar outcomes as continuous light exposure at equivalent fluence (7.2 J/cm2).

20.
Intern Med J ; 54(9): 1567-1571, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39132981

RESUMEN

Inherited metabolic diseases, as a first presentation in adults, are an under-recognised condition associated with significant morbidity and mortality. Diagnosis is challenging because of non-specific clinical and biochemical findings, resemblance to common conditions such as neuropsychiatric disorders and the misconception that these disorders predominantly affect paediatric populations. We describe a series of patients with multiple acyl-CoA dehydrogenase deficiency (MADD)/MADD-like disorders to highlight these diagnostic challenges.


Asunto(s)
Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa , Humanos , Masculino , Adulto , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/diagnóstico , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/sangre , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Femenino , Persona de Mediana Edad , Adulto Joven , Diagnóstico Diferencial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA