Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros











Intervalo de año de publicación
1.
Methods Mol Biol ; 2844: 211-218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39068342

RESUMEN

Genetic engineering enables the forced expression of desired products in bacteria, which can then be used for a variety of applications, including functional analysis and pharmaceuticals. Here, we describe a method for tuning translation in bacteria, including Escherichia coli and Rhodobacter capsulatus, based on a phenomenon known as TED (translation enhancement by a Dictyostelium gene sequence). This method promotes translation of mRNA encoded by downstream genes by inserting a short nucleotide sequence into the 5' untranslated region between the promoter and the Shine-Dalgarno (SD) sequence. Various expression levels can be observed depending on the inserted sequence and its length, even with an identical promoter.


Asunto(s)
Escherichia coli , Biosíntesis de Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo , Regiones no Traducidas 5'/genética , Regiones Promotoras Genéticas , Dictyostelium/genética , Dictyostelium/metabolismo , Ingeniería Genética/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Biochim Biophys Acta Biomembr ; 1866(3): 184291, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296218

RESUMEN

Ionic liquids (ILs) are salts composed of a combination of organic or inorganic cations and anions characterized by a low melting point, often below 100 °C. This property, together with an extremely low vapor pressure, low flammability and high thermal stability, makes them suitable for replacing canonical organic solvents, with a reduction of industrial activities impact on the environment. Although in the last decades the eco-compatibility of ILs has been extensively verified through toxicological tests performed on model organisms, a detailed understanding of the interaction of these compounds with biological membranes is far from being exhaustive. In this context, we have chosen to evaluate the effect of some ILs on native membranes by using chromatophores, photosynthetic vesicles that can be isolated from Rhodobacter capsulatus, a member of the purple non­sulfur bacteria. Here, carotenoids associated with the light-harvesting complex II, act as endogenous spectral probes of the transmembrane electrical potential (ΔΨ). By measuring through time-resolved absorption spectroscopy the evolution of the carotenoid band shift induced by a single excitation of the photosynthetic reaction center, information on the ΔΨ dissipation due to ionic currents across the membrane can be obtained. We found that some ILs cause a rather fast dissipation of the transmembrane ΔΨ even at low concentrations, and that this behavior is dose-dependent. By using two different models to analyze the decay of the carotenoid signals, we attempted to interpret at a mechanistic level the marked increase of ionic permeability caused by specific ILs.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/farmacología , Líquidos Iónicos/química , Solventes/química , Análisis Espectral , Permeabilidad , Carotenoides
3.
J Biol Chem ; 299(10): 105249, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37714464

RESUMEN

Cytochrome bc1 catalyzes electron transfer from quinol (QH2) to cytochrome c in reactions coupled to proton translocation across the energy-conserving membrane. Energetic efficiency of the catalytic cycle is secured by a two-electron and two-proton bifurcation reaction leading to oxidation of QH2 and reduction of the Rieske cluster and heme bL. The proton paths associated with this reaction remain elusive. Here, we used site-directed mutagenesis and quantum mechanical calculations to analyze the contribution of protonable side chains located at the heme bL side of the QH2 oxidation site in Rhodobacter capsulatus cytochrome bc1. We observe that the proton path is effectively switched off when H276 and E295 are simultaneously mutated to the nonprotonable residues in the H276F/E295V double mutant. The two single mutants, H276F or E295V, are less efficient but still transfer protons at functionally relevant rates. Natural selection exposed two single mutations, N279S and M154T, that restored the functional proton transfers in H276F/E295V. Quantum mechanical calculations indicated that H276F/E295V traps the side chain of Y147 in a position distant from QH2, whereas either N279S or M154T induce local changes releasing Y147 from that position. This shortens the distance between the protonable groups of Y147 and D278 and/or increases mobility of the Y147 side chain, which makes Y147 efficient in transferring protons from QH2 toward D278 in H276F/E295V. Overall, our study identified an extended hydrogen bonding network, build up by E295, H276, D278, and Y147, involved in efficient proton removal from QH2 at the heme bL side of QH2 oxidation site.

4.
FEBS Open Bio ; 13(11): 2081-2093, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37716914

RESUMEN

Ubiquinone (UQ) is a lipophilic electron carrier that functions in the respiratory and photosynthetic electron transfer chains of proteobacteria and eukaryotes. Bacterial UQ biosynthesis is well studied in the gammaproteobacterium Escherichia coli, in which most bacterial UQ-biosynthetic enzymes have been identified. However, these enzymes are not always conserved among UQ-containing bacteria. In particular, the alphaproteobacterial UQ biosynthesis pathways contain many uncharacterized steps with unknown features. In this work, we identified in the alphaproteobacterium Rhodobacter capsulatus a new decarboxylative hydroxylase and named it UbiN. Remarkably, the UbiN sequence is more similar to a salicylate hydroxylase than the conventional flavin-containing UQ-biosynthetic monooxygenases. Under aerobic conditions, R. capsulatus ΔubiN mutant cells accumulate 3-decaprenylphenol, which is a UQ-biosynthetic intermediate. In addition, 3-decaprenyl-4-hydroxybenzoic acid, which is the substrate of UQ-biosynthetic decarboxylase UbiD, also accumulates in ΔubiN cells under aerobic conditions. Considering that the R. capsulatus ΔubiD-X double mutant strain (UbiX produces a prenylated FMN required for UbiD) grows as a wild-type strain under aerobic conditions, these results indicate that UbiN catalyzes the aerobic decarboxylative hydroxylation of 3-decaprenyl-4-hydroxybenzoic acid. This is the first example of the involvement of decarboxylative hydroxylation in ubiquinone biosynthesis. This finding suggests that the C1 hydroxylation reaction is, at least in R. capsulatus, the first step among the three hydroxylation steps involved in UQ biosynthesis. Although the C5 hydroxylation reaction is often considered to be the first hydroxylation step in bacterial UQ biosynthesis, it appears that the R. capsulatus pathway is more similar to that found in mammalians.


Asunto(s)
Rhodobacter capsulatus , Animales , Rhodobacter capsulatus/genética , Ubiquinona , Oxigenasas de Función Mixta/genética , Escherichia coli/genética , Mamíferos
5.
Biochim Biophys Acta Bioenerg ; 1864(3): 148981, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37164301

RESUMEN

Cytochrome bc1 is a structural and functional homodimer. The catalytically-relevant inter-monomer electron transfer has been implicated by a number of experiments, including those based on analyses of the cross-dimer mutated derivatives. As some of the original data on these derivatives have recently been questioned, we extend kinetic analysis of these mutants to confirm the enzymatic origin of the observed activities and their relevance in exploration of conditions that expose electron transfer between the monomers. While obtained data consistently implicate rapid inter-monomer electron equilibration in cytochrome bc1, the mechanistic and physiological meaning of this equilibration is yet to be established.


Asunto(s)
Citocromos , Electrones , Cinética , Transporte de Electrón
6.
Structure ; 31(3): 318-328.e3, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36738736

RESUMEN

In purple photosynthetic bacteria, the photochemical reaction center (RC) and light-harvesting complex 1 (LH1) assemble to form monomeric or dimeric RC-LH1 membrane complexes, essential for bacterial photosynthesis. Here, we report a 2.59-Å resolution cryoelectron microscopy (cryo-EM) structure of the RC-LH1 supercomplex from Rhodobacter capsulatus. We show that Rba. capsulatus RC-LH1 complexes are exclusively monomers in which the RC is surrounded by a 15-subunit LH1 ring. Incorporation of a transmembrane polypeptide PufX leads to a large opening within the LH1 ring. Each LH1 subunit associates two carotenoids and two bacteriochlorophylls, which is similar to Rba. sphaeroides RC-LH1 but more than one carotenoid per LH1 in Rba. veldkampii RC-LH1 monomer. Collectively, the unique Rba. capsulatus RC-LH1-PufX represents an intermediate structure between Rba. sphaeroides and Rba. veldkampii RC-LH1-PufX. Comparison of PufX from the three Rhodobacter species indicates the important residues involved in dimerization of RC-LH1.


Asunto(s)
Rhodobacter capsulatus , Rhodobacter sphaeroides , Rhodobacter capsulatus/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Microscopía por Crioelectrón , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Carotenoides/metabolismo
7.
mBio ; 14(1): e0304022, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36598193

RESUMEN

Metabolic sensing is a crucial prerequisite for cells to adjust their physiology to rapidly changing environments. In bacteria, the response to intra- and extracellular ligands is primarily controlled by transcriptional regulators, which activate or repress gene expression to ensure metabolic acclimation. Translational control, such as ribosomal stalling, can also contribute to cellular acclimation and has been shown to mediate responses to changing intracellular molecules. In the current study, we demonstrate that the cotranslational export of the Rhodobacter capsulatus protein CutF regulates the translation of the downstream cutO-encoded multicopper oxidase CutO in response to extracellular copper (Cu). Our data show that CutF, acting as a Cu sensor, is cotranslationally exported by the signal recognition particle pathway. The binding of Cu to the periplasmically exposed Cu-binding motif of CutF delays its cotranslational export via its C-terminal ribosome stalling-like motif. This allows for the unfolding of an mRNA stem-loop sequence that shields the ribosome-binding site of cutO, which favors its subsequent translation. Bioinformatic analyses reveal that CutF-like proteins are widely distributed in bacteria and are often located upstream of genes involved in transition metal homeostasis. Our overall findings illustrate a highly conserved control mechanism using the cotranslational export of a protein acting as a sensor to integrate the changing availability of extracellular nutrients into metabolic acclimation. IMPORTANCE Metabolite sensing is a fundamental biological process, and the perception of dynamic changes in the extracellular environment is of paramount importance for the survival of organisms. Bacteria usually adjust their metabolisms to changing environments via transcriptional regulation. Here, using Rhodobacter capsulatus, we describe an alternative translational mechanism that controls the bacterial response to the presence of copper, a toxic micronutrient. This mechanism involves a cotranslationally secreted protein that, in the presence of copper, undergoes a process resembling ribosomal stalling. This allows for the unfolding of a downstream mRNA stem-loop and enables the translation of the adjacent Cu-detoxifying multicopper oxidase. Bioinformatic analyses reveal that such proteins are widespread, suggesting that metabolic sensing using ribosome-arrested nascent secreted proteins acting as sensors may be a common strategy for the integration of environmental signals into metabolic adaptations.


Asunto(s)
Cobre , Oxidorreductasas , Cobre/metabolismo , Oxidorreductasas/metabolismo , Sitios de Unión , Ribosomas/metabolismo , Regulación de la Expresión Génica
8.
Biochemistry (Mosc) ; 87(10): 1149-1158, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36273883

RESUMEN

In the structure of photosynthetic reaction center (RC) of the purple bacterium Cereibacter sphaeroides the highly conserved amino acid residue Ile-M206 is located near the bacteriochlorophyll dimer P, which is the primary electron donor, and the monomeric bacteriochlorophyll BA, which is the nearest electron acceptor. Since Ile-M206 is close to the C2-acetyl group of bacteriochlorophyll PB, the hydroxyl group of Tyr-M210, and to the C9-keto group of bacteriochlorophyll BA, as well as to the water molecule near the latter group, this site can be used for introducing mutations in order to study mechanisms of primary photochemical processes in the RC. Previously it was shown that the Ile→Glu substitution at the M204 position (analog of M206 in the RC of C. sphaeroides) in the RC of the closely related purple non-sulfur bacterium Rhodobacter capsulatus significantly affected kinetics of the P+HA- state formation, whereas the M204 Ile→Gln substitution led to the loss of BChl BA molecule from the complex structure. In the present work, it is shown that the single I(M206)Q or double I(M206)Q + F(M208)A amino acid substitutions in the RC of C. sphaeroides do not change the pigment composition and do not markedly influence redox potential of the primary electron donor. However, substitution of Ile M206 by Gln affected positions and amplitudes of the absorption bands of bacteriochlorophylls, increased lifetime of the primary electron donor P* excited state from 3.1 ps to 22 ps, and decreased quantum yield of the P+QA- state formation to 60%. These data suggest significant changes in the pigment-protein interactions in the vicinity of the primary electron donor P and the nearest electron acceptor BA. A considerable decrease was also noticed in the resistance of the mutant RC to thermal denaturation, which was more pronounced in the RC with the double substitution I(M206)Q + F(M208)A. This was likely associated with the disruption of the dense packing of the protein near bacteriochlorophylls PB and BA. Possible reasons for different effects of identical mutations on the properties of two highly homologous RCs from closely related purple non-sulfur bacteria are discussed.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética , Rhodobacter sphaeroides , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Bacterioclorofilas/química , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Cinética , Aminoácidos/metabolismo , Agua/metabolismo , Transporte de Electrón
9.
Front Bioeng Biotechnol ; 10: 902059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246361

RESUMEN

Photocaged inducer molecules, especially photocaged isopropyl-ß-d-1-thiogalactopyranoside (cIPTG), are well-established optochemical tools for light-regulated gene expression and have been intensively applied in Escherichia coli and other bacteria including Corynebacterium glutamicum, Pseudomonas putida or Bacillus subtilis. In this study, we aimed to implement a light-mediated on-switch for target gene expression in the facultative anoxygenic phototroph Rhodobacter capsulatus by using different cIPTG variants under both phototrophic and non-phototrophic cultivation conditions. We could demonstrate that especially 6-nitropiperonyl-(NP)-cIPTG can be applied for light-mediated induction of target gene expression in this facultative phototrophic bacterium. Furthermore, we successfully applied the optochemical approach to induce the intrinsic carotenoid biosynthesis to showcase engineering of a cellular function. Photocaged IPTG thus represents a light-responsive tool, which offers various promising properties suitable for future applications in biology and biotechnology including automated multi-factorial control of cellular functions as well as optimization of production processes.

10.
J Biosci Bioeng ; 134(5): 416-423, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36089467

RESUMEN

5-Aminolevulinic acid (5-ALA), a vital precursor for the biosynthesis of tetrapyrrole compounds, has been widely applied in agriculture and medicine, while extremely potential for the treatment of cancers, corona virus disease 2019 (COVID-19) and metabolic diseases in recent years. With the development of metabolic engineering and synthetic biology, the biosynthesis of 5-ALA has attracted increasing attention. 5-Aminolevulinic acid synthase (ALAS), the key enzyme for 5-ALA synthesis in the C4 pathway, is subject to stringent feedback inhibition by heme. In this work, cysteine-targeted mutation of ALAS was proposed to overcome this drawback. ALAS from Rhodopseudomonas palustris (RP-ALAS) and Rhodobacter capsulatus (RC-ALAS) were selected for mutation and eight variants were generated. Variants RP-C132A and RC-C201A increased enzyme activities and released hemin inhibition, respectively, maintaining 82.5% and 81.9% residual activities in the presence of 15 µM hemin. Moreover, the two variants exhibited higher stability than that of their corresponding wild-type enzymes. Corynebacterium glutamicum overexpressing RP-C132A and RC-C201A produced 14.0% and 21.6% higher titers of 5-ALA than the control, respectively. These results strongly suggested that variants RP-C132A and RC-C201A obtained by utilizing cysteine-targeted mutation strategy released hemin inhibition, broadening their applications in 5-ALA biosynthesis.


Asunto(s)
Ácido Aminolevulínico , COVID-19 , Humanos , Ácido Aminolevulínico/metabolismo , Hemo , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , Cisteína/genética , Hemina , Mutación
11.
Virus Genes ; 58(4): 327-349, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35538383

RESUMEN

Genomes of the obligate intracellular alpha proteobacterium Wolbachia pipientis often encode prophage-like regions, and in a few cases, purified particles have been recovered. Because the structure of a conserved WO phage genome has been difficult to establish, we examined paired terminase and portal genes in Wolbachia phages and prophages, relative to those encoded by the gene transfer agent RcGTA from the free-living alpha proteobacterium Rhodobacter capsulatus. Terminase and portal proteins from Wolbachia have higher similarity to orthologs encoded by RcGTA than to orthologs encoded by bacteriophage lambda. In lambdoid phages, these proteins play key roles in assembly of mature phage particles, while in less well-studied gene transfer agents, terminase and portal proteins package random fragments of bacterial DNA, which could confound elucidation of WO phage genomes. In WO phages and prophages, terminase genes followed by a short gpW gene may be separated from the downstream portal gene by open-reading frames encoding a GH_25 hydrolase/muramidase, a PD-(D/E)XK nuclease, a hypothetical protein and/or a RelE/ParE toxin-antitoxin module. These aspects of gene organization, coupled with evidence for a low, non-inducible yield of WO phages, and the small size of WO phage particles described in the literature raise the possibility that Wolbachia prophage regions participate in processes that extend beyond conventional bacteriophage lysogeny and lytic replication. These intervening genes, and their possible relation to functions associated with GTAs, may contribute to variability among WO phage genomes recovered from physical particles and impact the ability of WO phages to act as transducing agents.


Asunto(s)
Bacteriófagos , Wolbachia , Bacteriófagos/genética , Empaquetamiento del ADN , Endodesoxirribonucleasas , Muramidasa/genética , Profagos/genética , Wolbachia/genética
12.
Methods Mol Biol ; 2379: 125-154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35188660

RESUMEN

Terpenes are one of the largest classes of secondary metabolites that occur in all kingdoms of life and offer diverse valuable properties for food and pharma industry including pleasant odor or taste as well as antimicrobial or anticancer activities. A multitude of terpene biosynthesis pathways are known, but their efficient biotechnological exploitation requires an adequate microorganism as host which can ideally provide an optimal supply with biosynthetic isoprene precursors. Rhodobacter capsulatus, a Gram-negative, facultative anaerobic, photosynthetic non-sulfur purple bacterium belonging to the α-proteobacteria represents such a host particularly suitable for terpene production. Here, we describe methods for the expression of terpene biosynthetic enzymes in R. capsulatus and the extraction of products for analysis. At the same time, we summarize the current strategies to adjust the biosynthetic precursor supply via isoprenoid biosynthetic pathways.


Asunto(s)
Rhodobacter capsulatus , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Fotosíntesis , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Terpenos/metabolismo
13.
Environ Res ; 209: 112781, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35085564

RESUMEN

Microbial fuel cell (MFC) is a green technology and does not harm the environment. It can be used for wastewater treatment, hydrogen production and power generation. There are lot of avenues need to be investigated to increase the efficiency of MFC and in order to make it acceptable publicly. Efficiency of MFC depends on many factors. In this study, the influence of anode materials (Fe, Al and Zn), their sizes (12, 16 and 20 cm2) and shapes (square, rectangular and circular) were investigated on MFC efficiency. Dual chamber MFC setup was prepared in which Rhodobacter capsulatus was used as biocatalytic agent. Results revealed that Zn anode gave the highest voltage of 1.57 V with corresponding 0.23 A of current. Size of 20 cm2 of anode gave maximum voltage of 1.66 V with corresponding value of 0.08 A current, while anode size of 16 cm2 gave maximum current of 0.75 A with corresponding voltage of 1.65 V. Regarding their studied shapes, circular shape of anode gave the highest voltages of 1.70 V. Salt bridge played an important role in internal resistance of the fuel cell. The results were checked by changing the diameter and length of the salt bridge. The best results were noticed with 16 cm2 circular Zn anode and Fe as cathode. Salt bridge with 7.5 cm length gave the highest voltage of 1.65 V, while 4 gauge diameter salt bridge gave the highest current of 0.85 A.


Asunto(s)
Fuentes de Energía Bioeléctrica , Aluminio , Electricidad , Electrodos , Hierro , Aguas Residuales , Zinc
14.
Acta Naturae ; 14(4): 69-74, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36694898

RESUMEN

Lipopolysaccharides (LPS) and lipoteichoic acids (LTA) are the major inducers of the inflammatory response of blood cells caused by Gram-negative and some Gram-positive bacteria. CD14 is a common receptor for LPS and LTA that transfers the ligands to TLR4 and TLR2, respectively. In this work, we have demonstrated that the non-toxic LPS from Rhodobacter capsulatus PG blocks the synthesis of pro-inflammatory cytokines during the activation of blood cells by Streptococcus pyogenes LTA through binding to the CD14 receptor, resulting in the signal transduction to TLR2/TLR6 being blocked. The LPS from Rhodobacter capsulatus PG can be considered a prototype for developing preparations to protect blood cells against the LTA of gram-positive bacteria.

15.
Phage (New Rochelle) ; 3(4): 194-203, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36793882

RESUMEN

Background: Gene transfer agents (GTAs) are phage-like particles that transfer cellular genomic DNA between cells. A hurdle faced in studying GTA function and interactions with cells is the difficulty in obtaining pure and functional GTAs from cultures. Materials and Methods: We used a novel two-step method for purification of GTAs from R. capsulatus by monolithic chromatography. Results: Our efficient and simple process had advantages compared to previous approaches. The purified GTAs retained gene transfer activity and the packaged DNA could be used for further studies. Conclusions: This method is applicable to GTAs produced by other species and small phages, and could be useful for therapeutic applications.

16.
Front Microbiol ; 12: 720644, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566924

RESUMEN

Copper (Cu) is an essential cofactor required for redox enzymes in all domains of life. Because of its toxicity, tightly controlled mechanisms ensure Cu delivery for cuproenzyme biogenesis and simultaneously protect cells against toxic Cu. Many Gram-negative bacteria contain extracytoplasmic multicopper oxidases (MCOs), which are involved in periplasmic Cu detoxification. MCOs are unique cuproenzymes because their catalytic center contains multiple Cu atoms, which are required for the oxidation of Cu1+ to the less toxic Cu2+. Hence, Cu is both substrate and essential cofactor of MCOs. Here, we investigated the maturation of Rhodobacter capsulatus MCO CutO and its role in periplasmic Cu detoxification. A survey of CutO activity of R. capsulatus mutants with known defects in Cu homeostasis and in the maturation of the cuproprotein cbb 3-type cytochrome oxidase (cbb 3-Cox) was performed. This revealed that CutO activity is largely independent of the Cu-delivery pathway for cbb 3-Cox biogenesis, except for the cupric reductase CcoG, which is required for full CutO activity. The most pronounced decrease of CutO activity was observed with strains lacking the cytoplasmic Cu chaperone CopZ, or the Cu-exporting ATPase CopA, indicating that CutO maturation is linked to the CopZ-CopA mediated Cu-detoxification pathway. Our data demonstrate that CutO is important for cellular Cu resistance under both aerobic and anaerobic growth conditions. CutO is encoded in the cutFOG operon, but only CutF, and not CutG, is essential for CutO activity. No CutO activity is detectable when cutF or its putative Cu-binding motif are mutated, suggesting that the cutF product serves as a Cu-binding component required for active CutO production. Bioinformatic analyses of CutF-like proteins support their widespread roles as putative Cu-binding proteins for several Cu-relay pathways. Our overall findings show that the cytoplasmic CopZ-CopA dependent Cu detoxification pathway contributes to providing Cu to CutO maturation, a process that strictly relies on cutF.

17.
Front Microbiol ; 12: 712465, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589071

RESUMEN

Copper (Cu)-transporting P1B-type ATPases are ubiquitous metal transporters and crucial for maintaining Cu homeostasis in all domains of life. In bacteria, the P1B-type ATPase CopA is required for Cu-detoxification and exports excess Cu(I) in an ATP-dependent reaction from the cytosol into the periplasm. CopA is a member of the CopA1-type ATPase family and has been biochemically and structurally characterized in detail. In contrast, less is known about members of the CopA2-type ATPase family, which are predicted to transport Cu(I) into the periplasm for cuproprotein maturation. One example is CcoI, which is required for the maturation of cbb 3-type cytochrome oxidase (cbb 3-Cox) in different species. Here, we reconstituted purified CcoI of Rhodobacter capsulatus into liposomes and determined Cu transport using solid-supported membrane electrophysiology. The data demonstrate ATP-dependent Cu(I) translocation by CcoI, while no transport is observed in the presence of a non-hydrolysable ATP analog. CcoI contains two cytosolically exposed N-terminal metal binding sites (N-MBSs), which are both important, but not essential for Cu delivery to cbb 3-Cox. CcoI and cbb 3-Cox activity assays in the presence of different Cu concentrations suggest that the glutaredoxin-like N-MBS1 is primarily involved in regulating the ATPase activity of CcoI, while the CopZ-like N-MBS2 is involved in Cu(I) acquisition. The interaction of CcoI with periplasmic Cu chaperones was analyzed by genetically fusing CcoI to the chaperone SenC. The CcoI-SenC fusion protein was fully functional in vivo and sufficient to provide Cu for cbb 3-Cox maturation. In summary, our data demonstrate that CcoI provides the link between the cytosolic and periplasmic Cu chaperone networks during cbb 3-Cox assembly.

18.
Materials (Basel) ; 14(18)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34576650

RESUMEN

Since a concrete structure exposed to a sulfate environment is subject to surface ion ingress that yields cracking due to concrete swelling, its service life evaluation with an engineering modeling is very important. In this paper, cementitious repair materials containing bacteria, Rhodobacter capsulatus, and porous spores for immobilization were developed, and the service life of RC (Reinforced Concrete) structures with a developed bacteria-coating was evaluated through deterministic and probabilistic methods. Design parameters such protective coating thickness, diffusion coefficient, surface roughness, and exterior sulfate ion concentration were considered, and the service life was evaluated with the changing mean and coefficient of variation (COV) of each factor. From service life evaluation, more conservative results were evaluated with the probabilistic method than the deterministic method, and as a result of the analysis, coating thickness and surface roughness were derived as key design parameters for ensuring service life. In an environment exposed to an exterior sulfate concentration of 200 ppm, using the deterministic method, the service life was 17.3 years without repair, 19.7 years with normal repair mortar, and 29.6 years with the application of bacteria-coating. Additionally, when the probabilistic method is applied in the same environment, the service life was changed to 9.2-16.0 years, 10.5-18.2 years, and 15.4-27.4 years, respectively, depending on the variation of design parameters. The developed bacteria-coating technique showed a 1.47-1.50 times higher service life than the application of normal repair mortar, and the effect was much improved when it had a low COV of around 0.1.

19.
J Biotechnol ; 338: 20-30, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34237394

RESUMEN

Terpenes constitute one of the largest groups of secondary metabolites that are used, for example, as food-additives, fragrances or pharmaceuticals. Due to the formation of an intracytoplasmic membrane system and an efficient intrinsic tetraterpene pathway, the phototrophic α-proteobacterium Rhodobacter capsulatus offers favorable properties for the production of hydrophobic terpenes. However, research efforts have largely focused on sesquiterpene production. Recently, we have developed modular tools allowing to engineer the biosynthesis of terpene precursors. These tools were now applied to boost the biosynthesis of the diterpene casbene, the triterpene squalene and the tetraterpene ß-carotene in R. capsulatus SB1003. Selected enzymes of the intrinsic isoprenoid pathway and the heterologous mevalonate (MVA) pathway were co-expressed together with the respective terpene synthases in various combinations. Remarkably, co-expression of genes ispA, idi and dxs enhanced the synthesis of casbene and ß-carotene. In contrast, co-expression of precursor biosynthetic genes with the squalene synthase from Arabidopsis thaliana reduced squalene titers. Therefore, we further employed four alternative pro- and eukaryotic squalene synthases. Here, the synthase from Methylococcus capsulatus enabled highest product levels of 90 mg/L squalene upon co-expression with ispA. In summary, we demonstrate the applicability of R. capsulatus for the heterologous production of diverse terpene classes and provide relevant insights for further development of such platforms.


Asunto(s)
Rhodobacter capsulatus , Triterpenos , Ácido Mevalónico , Rhodobacter capsulatus/genética , Escualeno , Terpenos
20.
Heliyon ; 7(7): e07394, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34296001

RESUMEN

In this study, experimental results of hydrogen producing process based on anaerobic photosynthesis using the purple non-sulfur bacterium Rhodobacter capsulatus are scrutinized. The bacterial culture was carried out in a photo-bioreactor operated in a quasi-continuous mode, using lactate as a carbon source. The method is based on the continuous stirred tank reactors (CSTR) technique to access kinetic parameters. The dynamic evolution of hydrogen production as a function of time was accurately simulated using Luedeking-Piret model and the growth of R. capsulatus was computed using Gompertz model. The combination of both models was successfully applied to determine the relevant parameters (λ, µmax, α and ß) for two R. capsulatus strains studied: the wild-type strain B10 and the H2 over-producing mutant IR3. The mathematical description indicates that the photofermentation is more promising than dark fermentation for the conversion of organic substrates into biogas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA