Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Health Policy Plan ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39238224

RESUMEN

In low-and-middle-income countries (LMICs), private pharmacies play a crucial role in the supply of medicines and the provision of healthcare. However, they also engage in poor practices including the improper sale of medicines and caregiving beyond their legal scope. Addressing the deficiencies of private pharmacies can increase their potential contribution towards enhancing universal health coverage. Therefore, it is important to identify the determinants of their performance. The existing literature has mostly focused on pharmacy-level factors and their regulatory environment, ignoring the market in which they operate, particularly their relationship to existing public sector provision. In this study, we fill the gap in the literature by examining the relationship between the practices of private pharmacies and resource shortages in nearby public health facilities in Odisha, India. This is possible due to three novel primary datasets with detailed information on private pharmacies and different levels of public healthcare facilities, including their geospatial coordinates. We find that when public healthcare facilities experience shortages of healthcare workers and essential medicines, private pharmacies step in to fill the gaps created by adjusting the type and amount of care provision and medicine dispensing services they provide. Moreover, the relationship depends on their location, with public facilities and private pharmacies in rural areas performing substitutive caregiving roles, while they are complementary in urban areas. This study highlights how policies aimed at addressing resource shortages in public health facilities can generate dynamic responses from private pharmacies, highlighting the need for thorough scrutiny of the interaction between public healthcare facilities and private pharmacies in LMICs.

2.
Plant Divers ; 46(5): 640-647, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39290889

RESUMEN

Alien plant invasion success can be inhibited by two key biotic factors: native herbivores and plant diversity. However, few studies have experimentally tested whether these factors interact to synergistically resist invasion success, especially factoring in changing global environments (e.g. nutrient enrichment). Here we tested how the synergy between native herbivores and plant diversity affects alien plant invasion success in various nutrient conditions. For this purpose, we exposed alien plant species in pot-mesocosms to different levels of native plant diversity (4 vs. 8 species), native generalist herbivores, and high and low soil nutrient levels. We found that generalist herbivores preferred alien plants to native plants, inhibiting invasion success in a native community. This inhibition was amplified by highly diverse native communities. Further, the amplified effect between herbivory and native plant diversity was independent of nutrient conditions. Our results suggest that a higher diversity of native communities can strengthen the resistance of native generalist herbivores to alien plant invasions by enhancing herbivory tolerance. The synergistic effect remains in force in nutrient-enriched habitats that are always invaded by alien plant species. Our results shed light on the effective control of plant invasions using multi-trophic means, even in the face of future global changes.

3.
Front Plant Sci ; 15: 1421998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39129765

RESUMEN

Introduction: Strategically managing livestock grazing in arid regions optimizes land use and reduces the damage caused by overgrazing. Controlled grazing preserves the grassland ecosystem and fosters sustainability despite resource limitations. However, uneven resource distribution can lead to diverse grazing patterns and land degradation, particularly in undulating terrains. Methods: In this study, we developed a herbivore foraging algorithm based on a resource selection function model to analyze foraging distribution patterns, predict the probability of foraging, and identify the determinants of foraging probability in cattle. The study area was a complex desert landscape encompassing dunes and interdunes. Data on cattle movements and resource distribution were collected and analyzed to model and predict foraging behavior. Results: Our findings revealed that cattle prefer areas with abundant vegetation in proximity to water sources and avoid higher elevations. However, abundant resource availability mitigated these impacts and enhanced the role of water points, particularly during late grazing periods. The analysis showed that available resources primarily determine foraging distribution patterns and lessen the effects of landforms and water distance on patch foraging. Discussion: The results suggest that thoughtful water source placement and the subdivision of pastures into areas with varied terrain are crucial for sustainable grazing management. By strategically managing these factors, land degradation can be minimized, and the ecological balance of grassland ecosystems can be maintained. Further research is needed to refine the model and explore its applicability in other arid regions.

4.
PeerJ ; 12: e17877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39131614

RESUMEN

Background: Plants allocate resources to growth, defense, and stress resistance, and resource availability can affect the balance between these allocations. Allocation patterns are well-known to differ among species, but what controls possible intra-specific trade-offs and if variation in growth vs. defense potentially evolves in adaptation to resource availability. Methods: We measured growth and defense in a provenance trial of rubber trees (Hevea brasiliensis) with clones originating from the Amazon basin. To test hypotheses on the allocation to growth vs. defense, we relate biomass growth and latex production to wood and leaf traits, to climate and soil variables from the location of origin, and to the genetic relatedness of the Hevea clones. Results: Contrary to expectations, there was no trade-off between growth and defense, but latex yield and biomass growth were positively correlated, and both increased with tree size. The absence of a trade-off may be attributed to the high resource availability in a plantation, allowing trees to allocate resources to both growth and defense. Growth was weakly correlated with leaf traits, such as leaf mass per area, intrinsic water use efficiency, and leaf nitrogen content, but the relative investment in growth vs. defense was not associated with specific traits or environmental variables. Wood and leaf traits showed clinal correlations to the rainfall and soil variables of the places of origin. These traits exhibited strong phylogenetic signals, highlighting the role of genetic factors in trait variation and adaptation. The study provides insights into the interplay between resource allocation, environmental adaptations, and genetic factors in trees. However, the underlying drivers for the high variation of latex production in one of the commercially most important tree species remains unexplained.


Asunto(s)
Hevea , Látex , Hojas de la Planta , Hevea/genética , Hevea/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Látex/metabolismo , Biomasa , Madera/genética , Filogenia , Especificidad de la Especie
5.
Front Oncol ; 14: 1330705, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974245

RESUMEN

Background: The evaluation of existing resources and services is key to identify gaps and prioritize interventions to expand care capacity for children with central nervous system (CNS) tumors. We sought to evaluate the resources for pediatric neuro-oncology (PNO) in Mexico. Methods: A cross-sectional online survey with 35 questions was designed to assess PNO resources and services, covering aspects including number of patients, infrastructure, human resources, and diagnostic and treatment time intervals. The survey was distributed to the members of the Mexican Association of Pediatric Oncology and Hematology (AMOHP) who belong to the nation's many different health systems. Results: Responses were obtained from 33 institutions, distributed throughout the country and part of the many health systems that exist in Mexico. Twenty-one (64%) institutions had less than 10 new cases of pediatric CNS tumors per year. Although 30 (91%) institutions saw pediatric patients up to the age of 18 years, 2 (6%) had a cutoff of 15 years. Twenty-four (73%) institutions had between 1 and 3 pediatric oncologists providing care for children with CNS tumors. Six (18%) institutions did not have a neurosurgeon, while 19 (57%) institutions had a pediatric neurosurgeon. All centers had a pathology department, but 13 (39%) institutions only had access to basic histopathology. Eleven (33%) institutions reported histopathological diagnoses within one week, but 3 (9%) took more than 4 weeks. Radiotherapy for pediatric CNS tumors was referred to outside centers at 18 (55%) institutions. All centers had access to conventional cytotoxic chemotherapy, but only 6 (18%) had access to targeted therapy. Eighteen (55%) respondents estimated a survival rate of less than 60%. Fifteen (45%) centers attributed the main cause of mortality to non-tumor related factors, including infection and post-surgical complications. Conclusions: This is the first national assessment of the resources available in Mexico for the treatment of CNS tumors. It shows disparities in resource capacity and a lack of the specific and efficient diagnoses that allow timely initiation of treatment. These data will enable the prioritization of collaborative interventions in the future.

6.
Ecol Evol ; 14(7): e11692, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38983706

RESUMEN

Water availability strongly influences the survival, growth, and reproduction of most terrestrial plant species. Experimental evidence has well documented the effect of changes in total amount of water availability on non-native vs. native plants. However, little is known about how fluctuations in water availability affect these two groups, although more extreme fluctuations in water availability increasingly occur with prolonged drought and extreme precipitation events. Here, we grew seven non-native and seven native plant species individually in the greenhouse. Then, we exposed them to four watering treatments, each treatment with the same total amount of water, but with different divisions: W1 (added water 16 times with 125 mL per time), W2 (8 times, 250 mL per time), W3 (4 times, 500 mL per time), and W4 (2 times, 1000 mL per time). We found that both non-native and native plants produced the most biomass under medium frequency/magnitude watering treatments (W2 and W3). Interestingly, non-native plants produced 34% more biomass with the infrequent, substantial watering treatment (W4) than with frequent, minor watering treatment (W1), whereas native plants showed opposite patterns, producing 26% more biomass with W1 than with W4. Differences in the ratio of root to shoot under few/large and many/small watering treatments of non-native vs. native species probably contributed to their different responses in biomass production. Our results advance the current understanding of the effect of water availability on non-native plants, which are affected not only by changes in amount of water availability but also by fluctuations in water availability. Furthermore, our results indicate that an increased few/large precipitation pattern expected under climate change conditions might further promote non-native plant invasions. Future field experiments with multiple phylogenetically controlled pairs of non-native and native species will be required to enhance our understanding of how water availability fluctuations impact on non-native invasions.

7.
Ecol Evol ; 14(7): e11632, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38966241

RESUMEN

Resource pulses are ecologically important phenomenon that occur in most ecosystems globally. Following optimal foraging theory, many consumers switch to pulsatile foods when available, examples of which include fruit mast and vulnerable young prey. Yet how the availability of resource pulses shapes the ecology of predators is still an emerging area of research; and how much individual variation there is in response to pulses is not well understood. We hypothesized that resource pulses would lead to dietary convergence in our population, which we tested by tracking both population-level and individual coyote diets for 3 years in South Carolina, USA. We (1) described seasonal dietary shifts in relation to resource pulses; (2) compared male and female diets across seasons; and (3) tested this dietary convergence hypothesis by quantifying individual dietary variation both across and within periods when resource pulses were available. We found that pulses of white-tailed deer fawns and blackberries composed over half of coyote diet in summer, and persimmon fruits were an important component in fall. Male and female coyotes generally had similar diets, but males consumed more deer in fall, perhaps driven by scavenging more. We found support for our dietary convergence hypothesis, where individuals had more similar diets during resource pulses compared to a non-pulse period. We also found that this convergence happened before peak availability, suggesting a non-symmetric response to pulse availability. We show that nearly all coyotes eat fawns, suggesting that targeted efforts to remove "fawn killers" would be in vain. Instead, given how quickly coyotes collectively converge on resource pulses, our findings show that resource pulses could potentially be used by managers to alter the behavior of apex predators. More broadly, we open a new line of inquiry into how variation in individual foraging decisions scales up to shape the effects of resource pulses on ecological communities.

8.
J Dairy Sci ; 107(9): 7286-7298, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38825128

RESUMEN

Dominance hierarchies are known for mitigating conflicts and guiding priority of access to limited resources in gregarious animals. The dominance hierarchy of dairy cows is typically investigated using agonistic interactions, often monitored at the feed bunk right after fresh feed delivery when competition is high, resulting in frequent interactions. Yet, the outcome of agonistic interactions during times of high competition may be more influenced by cows' high valuation of fresh feed than their intrinsic attributes, such that the dominance hierarchy constructed using agonistic interactions under high versus low competition times might differ. We tested how the structure of the dominance hierarchy changes in relation to different levels of competition in a dynamic group of 48 lactating dairy cows over 10 mo, with 6 cows exchanged every 16 d, for a total of 159 cows. Using a validated algorithm, we continuously detected the actor and reactor of replacement behaviors in 30 feed bins as cows competed for feed. We also calculated the percentage of occupied feed bins to characterize competition at the moment of each replacement. These data were combined to create hierarchies using Elo ratings, separately for 25 occupancy levels ranging from 13% to 100%. For each 1% rise in feeder occupancy, hierarchy steepness fell by 2.41 × 10-3 ± 9.71 × 10-5 (SE), and the percentage of dyads where both cows replaced each other rose by 0.13% ± 0.01%. At the highest feeder occupancy level in comparison to the lowest one, we observed 7.57% more dyads in which the dominant individual (those that won more interactions at the lowest feeder occupancy) started to lose proportionally more. The magnitude of decrease in the winning rate of the dominant individual in those dyads also got amplified by 1.06 × 10-3% ± 1.37 × 10-4% (SE) for each 1% increase in feeder occupancy. These findings illustrate how inferred hierarchies vary with competition, with high competition flattening the hierarchy due to increased success of subordinate animals. We suggest that during heightened competition, increased valuation of resources can affect competitive success more than the individual's intrinsic dominance attributes. We recommend against calculating dominance hierarchies based on agonistic interactions during periods of high competition alone, and more generally urge researchers to differentiate agonistic interactions based on context when constructing dominance hierarchies.


Asunto(s)
Lactancia , Predominio Social , Animales , Bovinos , Femenino , Conducta Animal , Conducta Competitiva
9.
Biology (Basel) ; 13(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38927290

RESUMEN

Globally, habitat fragmentation has increased the proximity between wildlife, humans, and emerging predators such as free-ranging dogs. In these fragmented landscapes, encounters between primates and dogs are escalating, with primates often falling victim to dog attacks while navigating patchy landscapes and fragmented forests. We aim to investigate how these primates deal with the simultaneous threats posed by humans and predators, specifically focusing on the adaptive strategies of Central Himalayan langur (CHL) in the landscape of fear. To address this, we conducted a behavioral study on the CHL in an agro-forest landscape, studying them for a total of 3912 h over two consecutive years. Our results indicate that, compared to their most common resting behavior, CHLs allocate more time to feeding and locomotion, and less time to socializing in the presence of humans and predatory dogs. Additionally, they exhibit increased feeding and locomotion and reduced social behavior in agro-forest or open habitats. These behavioral patterns reflect adaptive responses to the landscape of fear, where the presence of predators significantly influences their behavior and resource utilization. This study suggests measures to promote coexistence between humans and wildlife through the integration of effective management strategies that incorporate both ecological and social dimensions of human-wildlife interactions.

10.
Am J Bot ; 111(6): e16355, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831659

RESUMEN

PREMISE: Theories of plant-herbivore interactions hold that seedlings are more vulnerable to herbivory in warmer and more stable climates at lower elevations. Hypotheses of plant apparency, resource concentration, and resource availability have been proposed to explain variability in leaf herbivory. However, seasonal differences in the effects of these hypotheses on leaf herbivory on seedlings remain unclear. METHODS: We evaluated the three herbivory hypotheses by comparing the percentage and frequency of leaf herbivory in understory broadleaf seedlings in a subtropical forest in May (spring) and October (autumn) along an elevational gradient (290-1370 m a.s.l.). In total, we measured 2890 leaves across 696 seedlings belonging to 95 species and used beta regressions to test the effects of plant apparency (e.g., leaf area, seedling height), resource concentration (e.g., plant species diversity), and resource availability (e.g., canopy openness, soil available N and P) on leaf herbivory. RESULTS: Seedlings exhibited unimodal patterns of leaf herbivory along elevation, with drivers of leaf herbivory varying by the month. Variation in the frequency of leaf herbivory was best explained by the resource concentration hypothesis (e.g., plant species diversity) in both months, and herbivory was lower on seedlings in sites with higher plant diversity. Plant apparency hypothesis (e.g., leaf area, seedling height) was weakly supported only in spring, and the evidence for resource availability hypothesis (e.g., canopy openness, soil nutrients) was mixed. CONCLUSIONS: This study supports the resource concentration hypothesis and reveals the importance of seasonal difference on understanding leaf herbivory patterns and the drivers of plant diversity in subtropical forests.


Asunto(s)
Herbivoria , Insectos , Hojas de la Planta , Plantones , Plantones/fisiología , Animales , Insectos/fisiología , Hojas de la Planta/fisiología , Estaciones del Año , Altitud , Bosques
11.
Oecologia ; 205(1): 13-25, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38758233

RESUMEN

A fundamental question in invasive plant ecology is whether invasive and native plants have different ecological roles. Differences in functional traits have been explored, but we lack a comparison of the factors affecting the spread of co-occurring natives and invasives. Some have proposed that to succeed, invasives would colonize a wider variety of sites, would disperse farther, or would be better at colonizing sites with more available light and soil nutrients than natives. We examined patterns of spread over 70 years in a regenerating forest in Connecticut, USA, where both native and invasive species acted as colonizers. We compared seven invasive and 19 native species in the characteristics of colonized plots, variation in these characteristics, and the importance of site variables for colonization. We found little support for the hypotheses that invasive plants succeed by dispersing farther than native plants or by having a broader range of site tolerances. Colonization by invasives was also not more dependent on light than colonization by natives. Like native understory species, invasive plants spread into closed-canopy forest and species-rich communities despite earlier predictions that these communities would resist invasion. The biggest differences were that soil nitrate and the initial land cover being open field increased the odds of colonization for most invasives but only for some natives. In large part, though, the spread of native and invasive plants was affected by similar factors.


Asunto(s)
Bosques , Especies Introducidas , Connecticut , Suelo , Plantas , Ecosistema
12.
Ecol Evol ; 14(4): e11209, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628923

RESUMEN

For most herbivorous animals, group-living appears to incur a high cost by intensifying feeding competition. These costs raise the question of how gregariousness (i.e., the tendency to aggregate) could have evolved to such an extent in taxa such as anthropoid primates and ungulates. When attempting to test the potential benefits and costs, previous foraging models demonstrated that group-living might be beneficial by lowering variance in intake, but that it reduces overall foraging success. However, these models did not fully account for the fact that gregariousness has multiple experiences and can vary in relation to ecological variables and foraging competition. Here, we present an agent-based model for testing how ecological variables impact the costs and benefits of gregariousness. In our simulations, primate-like agents forage on a variable resource landscape while maintaining spatial cohesion with conspecifics to varying degrees. The agents' energy intake rate, daily distance traveled, and variance in energy intake were recorded. Using Morris Elementary Effects sensitivity analysis, we tested the sensitivity of 10 model parameters, of which 2 controlled gregarious behavior and 8 controlled food resources, including multiple aspects of temporal and spatial heterogeneity. We found that, while gregariousness generally increased feeding competition, the costs of gregariousness were much lower when resources were less variable over time (i.e., when calorie extraction was slow and resource renewal was frequent). We also found that maintaining proximity to other agents resulted in lower variance in energy intake when resources were more variable over time. Thus, it appears that the costs and benefits of gregariousness are strongly influenced by the temporal characteristics of food resources, giving insight into the pressures that shaped the evolution of sociality and group living, including in our own lineage.

13.
Mov Ecol ; 12(1): 34, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689374

RESUMEN

BACKGROUND: While interactions in nature are inherently local, ecological models often assume homogeneity across space, allowing for generalization across systems and greater mathematical tractability. Density-dependent disease models are a prominent example of models that assume homogeneous interactions, leading to the prediction that disease transmission will scale linearly with population density. In this study, we examined how the scale of larval butterfly movement interacts with the resource landscape to influence the relationship between larval contact and population density in the Baltimore checkerspot (Euphydryas phaeton). Our study was inspired by the recent discovery of a viral pathogen that is transmitted horizontally among Baltimore checkerspot larvae. METHODS: We used multi-year larvae location data across six Baltimore checkerspot populations in the eastern U.S. to test whether larval nests are spatially clustered. We then integrated these spatial data with larval movement data in different resource contexts to investigate whether heterogeneity in spatially local interactions alters the assumed linear relationship between larval nest density and contact. We used Correlated Random Walk (CRW) models and field observations of larval movement behavior to construct Probability Distribution Functions (PDFs) of larval dispersal, and calculated the overlap in these PDFs to estimate conspecific contact within each population. RESULTS: We found that all populations exhibited significant spatial clustering in their habitat use. Subsequent larval movement rates were influenced by encounters with host plants and larval age, and under many movement scenarios, the scale of predicted larval movement was not sufficient to allow for the "homogeneous mixing" assumed in density dependent disease models. Therefore, relationships between population density and larval contact were typically non-linear. We also found that observed use of available habitat patches led to significantly greater contact than would occur if habitat use were spatially random. CONCLUSIONS: These findings strongly suggest that incorporating larval movement and spatial variation in larval interactions is critical to modeling disease outcomes in E. phaeton. Epidemiological models that assume a linear relationship between population density and larval contact have the potential to underestimate transmission rates, especially in small populations that are already vulnerable to extinction.

14.
Ecol Evol ; 14(4): e11150, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38571799

RESUMEN

In the Arctic tundra, predators face recurrent periods of food scarcity and often turn to ungulate carcasses as an alternative food source. As important and localized resource patches, carrion promotes co-occurrence of different individuals, and its use by predators is likely to be affected by interspecific competition. We studied how interspecific competition and resource availability impact winter use of carrion by Arctic and red foxes in low Arctic Fennoscandia. We predicted that the presence of red foxes limits Arctic foxes' use of carrion, and that competition depends on the availability of other resources. We monitored Arctic and red fox presence at supp lied carrion using camera traps. From 2006 to 2021, between 16 and 20 cameras were active for 2 months in late winter (288 camera-winters). Using a multi-species dynamic occupancy model at a week-to-week scale, we evaluated the use of carrion by foxes while accounting for the presence of competitors, rodent availability, and supplemental feeding provided to Arctic foxes. Competition affected carrion use by increasing both species' probability to leave occupied carcasses between consecutive weeks. This increase was similar for the two species, suggesting symmetrical avoidance. Increased rodent abundance was associated with a higher probability of colonizing carrion sites for both species. For Arctic foxes, however, this increase was only observed at carcasses unoccupied by red foxes, showing greater avoidance when alternative preys are available. Supplementary feeding increased Arctic foxes' carrion use, regardless of red fox presence. Contrary to expectations, we did not find strong signs of asymmetric competition for carrion in winter, which suggests that interactions for resources at a short time scale are not necessarily aligned with interactions at the scale of the population. In addition, we found that competition for carcasses depends on the availability of other resources, suggesting that interactions between predators depend on the ecological context.

15.
J Ethnobiol Ethnomed ; 20(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169414

RESUMEN

BACKGROUND: Herbal tea usually refers to "beverage plants that do not belong to the genus Camellia", and it holds a significant historical legacy as a traditional beverage among specific regions and ethnic groups. In light of this, our research aims to investigate and analyze the traditional knowledge pertaining to herbal tea plants used by local people in the Qianxinan Buyi and Miao Autonomous Prefecture, Guizhou Province. We also initiated preliminary efforts to create tea products from herbal tea leaves using various processing techniques. Additionally, we attempted to test hypotheses to elucidate how local people select herbal tea plants. METHODS: Data related to the use of herbal tea plants in this study were collected through semi-structured interviews and participatory observations in four villages in Qianxinan. Quantitative indicators, including the relative frequency of citation (RFC) and the relative importance (RI) value, were calculated, and the availability of plants was also evaluated. General linear model was performed to examine the relationship between the frequency of citation and resource availability, as well as the correlation between the relative frequency of citation and the relative importance, to test both the resource availability hypothesis and the versatility hypothesis. Centella asiatica tea was processed using techniques from green tea, black tea and white tea, with a preliminary sensory evaluation conducted. RESULTS: A total of 114 plant species were documented as being used for herbal teas by local residents, representing 60 families and 104 genera. Of these, 61% of herbal tea plants were found growing in the wild, and 11 species were exotic plants. The family with the highest number of species was Asteraceae (20 species). The study identified 33 major medicinal functions of herbal tea, with clearing heat-toxin and diuresis being the most common functions. General linear model revealed a strong correlation (correlation coefficient of 0.72, p < 0.001) between the frequency of citation and plant availability, as well as a significant correlation (correlation coefficient of 0.63, p < 0.001) between RFC and RI. Under different processing conditions, the characteristics of Centella asiatica tea exhibited variations and were found to be suitable for consumption. CONCLUSION: The consumption of herbal tea serves as a preventive measure against common ailments for local residents. The resource availability hypothesis, diversification hypothesis and the versatility hypothesis were shown to provide some insight into "how and why local communities select plants for use." Exotic herbal tea plants in the study area also possess valuable therapeutic properties. The processing and production of Centella asiatica herbal tea products hold promising prospects.


Asunto(s)
Plantas Medicinales , Tés de Hierbas , Humanos , Etnobotánica , Fitoterapia/métodos , , China
16.
Ann Bot ; 133(5-6): 819-832, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150535

RESUMEN

BACKGROUND AND AIMS: In many systems, postfire vegetation recovery is characterized by temporal changes in plant species composition and richness. We attribute this to changes in resource availability with time since fire, with the magnitude of species turnover determined by the degree of resource limitation. Here, we test the hypothesis that postfire species turnover in South African fynbos heathland is powered by fire-modulated changes in nutrient availability, with the magnitude of turnover in nutrient-constrained fynbos being greater than in fertile renosterveld shrubland. We also test the hypothesis that floristic overlaps between fynbos and renosterveld are attributable to nutritional augmentation of fynbos soils immediately after fire. METHODS: We use vegetation survey data from two sites on the Cape Peninsula to compare changes in species richness and composition with time since fire. KEY RESULTS: Fynbos communities display a clear decline in species richness with time since fire, whereas no such decline is apparent in renosterveld. In fynbos, declining species richness is associated with declines in the richness of plant families having high foliar concentrations of nitrogen, phosphorus and potassium and possessing attributes that are nutritionally costly. In contrast, families that dominate late-succession fynbos possess adaptations for the acquisition and retention of sparse nutrients. At the family level, recently burnt fynbos is compositionally more similar to renosterveld than is mature fynbos. CONCLUSIONS: Our data suggest that nutritionally driven species turnover contributes significantly to fynbos community richness. We propose that the extremely low baseline fertility of fynbos soils serves to lengthen the nutritional resource axis along which species can differentiate and coexist, thereby providing the opportunity for low-nutrient extremophiles to coexist spatially with species adapted to more fertile soil. This mechanism has the potential to operate in any resource-constrained system in which episodic disturbance affects resource availability.


Asunto(s)
Biodiversidad , Suelo , Sudáfrica , Suelo/química , Nutrientes/metabolismo , Incendios , Ecosistema , Nitrógeno/metabolismo , Fósforo/metabolismo , Fósforo/análisis , Plantas/metabolismo
17.
Appl Environ Microbiol ; 90(1): e0156623, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38126758

RESUMEN

Microbial interactions affect community stability and niche spaces in all ecosystems. However, it is not clear what factors influence these interactions, leading to changes in species fitness and ecological niches. Here, we utilized 16 monocultures and their corresponding pairwise co-cultures to measure niche changes among 16 cultivable bacterial species in a wide range of carbon sources, and we used resource availability as a parameter to alter the interactions of the synthetic bacterial community. Our results suggest that metabolic similarity drives niche deformation between bacterial species. We further found that resource limitation resulted in increased microbial inhibition and more negative interactions. At high resource availability, bacteria exhibited little inhibitory potential and stronger facilitation (in 71% of cases), promoting niche expansion. Overall, our results show that metabolic similarity induces different degrees of resource competition, altering pairwise interactions within the synthetic community and potentially modulating bacterial niches. This framework may lay the basis for understanding complex niche deformation and microbial interactions as modulated by metabolic similarity and resource availability.IMPORTANCEUnderstanding the intricate dynamics of microbial interactions is crucial for unraveling the stability and ecological roles of diverse ecosystems. However, the factors driving these interactions, leading to shifts in species fitness and ecological niches, remain inadequately explored. We demonstrate that metabolic similarity serves as a key driver of niche deformation between bacterial species. Resource availability emerges as a pivotal parameter, affecting interactions within the community. Our findings reveal heightened microbial inhibition and more negative interactions under resource-limited conditions. The prevalent facilitation is observed under conditions of high resource availability, underscoring the potential for niche expansion in such contexts. These findings emphasize that metabolic similarity induces varying degrees of resource competition, thereby altering pairwise interactions within the synthetic community and potentially modulating bacterial niches. Our workflow has broad implications for understanding the roles of metabolic similarity and resource availability in microbial interactions and for designing synthetic microbial communities.


Asunto(s)
Bacterias , Microbiota , Interacciones Microbianas , Carbono
18.
Ecology ; 104(11): e4168, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37712249

RESUMEN

Wood in the deep sea serves as a substantial food source in an otherwise barren environment, forming specialized, endemic, and diverse community assemblages. This biodiversity reliance on a terrestrial source creates a linkage by which anthropogenic impacts on land can alter the deep oceans. Knowledge of the alpha- or beta-diversity of entire wood-fall communities, and wooden drivers of each would elucidate the terrestrial and deep-sea linkage. We report on a multifactorial experiment in the deep ocean in which alpha- and beta-diversity of 43 wood falls and 11 tree species are quantified over time, wood density, and wood size. We tested multiple hypotheses seeking to link how biodiversity on land may impact the biodiversity in the deep oceans. A tremendous biodiversity occurred among these wood falls in the deep Gulf of Mexico; 114 invertebrate species from 10 phyla. Time, wood hardness, and wood size all impacted various components of community structure. In many cases, these effects were additive. Species occurring on softwoods versus hardwoods and small versus large wood falls were compositionally different. Although various processes can control community structure, this experiment suggests a strong influence of environmental filtering and host specificity of wood-fall invertebrates suggesting an intimate coupling to tree biodiversity and biomass on land.


Asunto(s)
Ecosistema , Árboles , Animales , Biodiversidad , Madera , Océanos y Mares , Invertebrados
19.
Front Bioeng Biotechnol ; 11: 1210392, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37588137

RESUMEN

Aquatic environments account for half of global CH4 emissions, with freshwater wetlands being the most significant contributors. These CH4 fluxes can be partially offset by aerobic CH4 oxidation driven by methanotrophs. Additionally, some methanotrophs can convert CH4 into polyhydroxyalkanoate (PHA), an energy storage molecule as well as a promising bioplastic polymer. In this study, we investigate how PHA-accumulating methanotrophic communities enriched from wetlands were shaped by varying resource availability (i.e., C and N concentrations) at a fixed C/N ratio. Cell yields, PHA accumulation, and community composition were evaluated in high (20% CH4 and 10 mM NH4 +) and low resource (0.2% CH4 and 0.1 mM NH4 +) conditions simulating engineered and environmental settings, respectively. High resource availability decreased C-based cell yields, while N-based cell yields remained stable, suggesting nutrient exchange patterns differed between methanotrophic communities at different resource concentrations. PHA accumulation was only observed in high resource enrichments, producing approximately 12.6% ± 2.4% (m/m) PHA, while PHA in low resource enrichments remained below detection. High resource enrichments were dominated by Methylocystis methanotrophs, while low resource enrichments remained significantly more diverse and contained only a minor population of methanotrophs. This study demonstrates that resource concentration shapes PHA-accumulating methanotrophic communities. Together, this provides useful information to leverage such communities in engineering settings as well as to begin understanding their role in the environment.

20.
Ecol Evol ; 13(8): e10393, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37554397

RESUMEN

The evolution of body size within and among species is predicted to be influenced by multifarious environmental factors. However, the specific drivers of body size variation have remained difficult to understand because of the wide range of proximate factors that covary with ectotherm body sizes across populations with varying local environmental conditions. Here, we used female Eremias argus lizards collected from different populations across their wide range in China, and constructed linear mixed models to assess how climatic conditions and/or available resources at different altitudes shape the geographical patterns of lizard body size across altitude. Lizard populations showed significant differences in body size across altitudes. Furthermore, we found that climatic and seasonal changes along the altitudinal gradient also explained variations in body size among populations. Specifically, body size decreased with colder and drier environmental conditions at high altitudes, reversing Bergmann's rule. Limited resources at high altitudes, measured by the low vegetative index, may also constrain body size. Therefore, our study demonstrates that multifarious environmental factors could strongly influence the intraspecific variation in organisms' body size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA