Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(13): e33687, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040243

RESUMEN

Purpose: Gemcitabine is a basic chemotherapy drug for pancreatic cancer (PC), but resistance is common and causes tumor recurrence and metastasis. Therefore, it is significant to explore gemcitabine resistance-related molecules for individualized treatment and prognosis assessment of PC. Methods: In this study, transcriptome sequencing and TCGA database analysis were performed, and a differentiated gene AHNAK2 was screened. MEXPRESS database, tissue microarray analysis, and CIBERSORT and TIMER databases were used to correlate AHNAK2 expression with clinicopathological features and prognosis and immune infiltration of PC. Enrichment analysis was used to investigate the significant biological processes associated with AHNAK2. Results: AHNAK2 was highly expressed in gemcitabine-resistant cells. High expression of AHNAK2 increased the risk of poor overall survival (OS) and progression-free survival (PFS) in PC. Clinicopathologic analysis revealed that AHNAK2 correlated with KRAS, TP53 mutations, histologic type, short OS, N stage, and elevated CA199 levels in PC. Knockdown of AHNAK2 inhibited the ability of cell proliferation and colony formation and enhanced the toxic effect of gemcitabine in PC. Meanwhile, the knockdown of AHNAK2 expression enhanced cell-ECM adhesion, inhibited cell-cell adhesion, and downregulated the KRAS/p53 signaling pathway in PC. Furthermore, AHNAK2 was correlated with immune infiltration, especially B cells and macrophages. Conclusions: Our study unveils for the first time the pivotal role of AHNAK2 in PC, particularly its association with gemcitabine resistance, clinical prognosis, and immune infiltration. AHNAK2 not only drives the proliferation and drug resistance of PC cells by potentially activating the KRAS/p53 pathway but also significantly impacts cell-cell and cell- ECM adhesion. Additionally, AHNAK2 plays a crucial role in modulating the tumor immune microenvironment. These insights underscore AHNAK2's unique potential as a novel therapeutic target for overcoming gemcitabine resistance, offering new perspectives for PC treatment strategies.

2.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457198

RESUMEN

Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy and has a unique metastatic route using ascites, known as the transcoelomic root. However, studies on ascites and contained cellular components have not yet been sufficiently clarified. In this review, we focus on the significance of accumulating ascites, contained EOC cells in the form of spheroids, and interaction with non-malignant host cells. To become resistant against anoikis, EOC cells form spheroids in ascites, where epithelial-to-mesenchymal transition stimulated by transforming growth factor-ß can be a key pathway. As spheroids form, EOC cells are also gaining the ability to attach and invade the peritoneum to induce intraperitoneal metastasis, as well as resistance to conventional chemotherapy. Recently, accumulating evidence suggests that EOC spheroids in ascites are composed of not only cancer cells, but also non-malignant cells existing with higher abundance than EOC cells in ascites, including macrophages, mesothelial cells, and lymphocytes. Moreover, hetero-cellular spheroids are demonstrated to form more aggregated spheroids and have higher adhesion ability for the mesothelial layer. To improve the poor prognosis, we need to elucidate the mechanisms of spheroid formation and interactions with non-malignant cells in ascites that are a unique tumor microenvironment for EOC.


Asunto(s)
Neoplasias Glandulares y Epiteliales , Neoplasias Ováricas , Ascitis/patología , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Ováricas/patología , Esferoides Celulares/metabolismo , Microambiente Tumoral
3.
Eur J Med Chem ; 236: 114306, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35421658

RESUMEN

The development of inhibitors of key biological mechanisms involved in multidrug resistance (MDR) burden meets an important medical need but still represents a challenging task. Major MDR targets in both bacterial and cancer cells are multidrug efflux systems. Several aspects should be considered in the attempt to design efficient inhibitors of these systems such as toxicity, stability, permeability as a few examples. In order to successfully design promising new compounds, a full understanding of the efflux mechanism is required, from both biological and structural points of view. It is nowadays well established that the success rate in classical drug design and biological evaluation improves when combined with in silico methodologies. In this review, we focus on the biological evaluation and molecular mechanistic insights of inhibitors of the drug efflux activity of the Hedgehog receptor Patched1 (Ptch1). Ptch1 is known to be over-expressed in many types of cancers, but its activity and role in the resistance to chemotherapy of cancer cells have been highlighted only recently. Remarkably, due to its peculiar efflux mechanism, inhibition of Ptch1 was shown to be particularly relevant for improving the efficacy of chemotherapy without concomitant toxicity for healthy cells or potential side effects. To date, three compounds have been identified as efficient Ptch1 inhibitors, namely astemizole, methiothepin and panicein A hydroquinone. Due to the chemical and structural differences of these molecules, the hit-to-lead drug design is not straightforward. This review describes how the merging of in vitro, in vivo and in silico studies provides molecular details that could contribute to the rational design of new Ptch1 inhibitors.


Asunto(s)
Proteínas Hedgehog , Neoplasias , Receptor Patched-1 , Diseño de Fármacos , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Neoplasias/tratamiento farmacológico
4.
Biochem Soc Trans ; 50(2): 839-851, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35343563

RESUMEN

Pancreatic cancer incurs the worst survival rate of the major cancers. High levels of the protease matrix metalloproteinase-7 (MMP-7) in circulation correlate with poor prognosis and limited survival of patients. MMP-7 is required for a key path of pancreatic tumorigenesis in mice and is present throughout tumor progression. Enhancements to chemotherapies are needed for increasing the number of pancreatic tumors that can be removed and for preventing relapses after surgery. With these ends in mind, selective inhibition of MMP-7 may be worth investigation. An anti-MMP-7 monoclonal antibody was recently shown to increase the susceptibility of several pancreatic cancer cell lines to chemotherapeutics, increase their apoptosis, and decrease their migration. MMP-7 activities are most apparent at the surfaces of innate immune, epithelial, and tumor cells. Proteolytic shedding of multiple protein ectodomains by MMP-7 from such cell surfaces influence apoptosis, proliferation, migration, and invasion. These activities warrant targeting of MMP-7 selectively in pancreatic cancer and other tumors of mucosal epithelia. Competitive and non-competitive modes of MMP-7 inhibition are discussed.


Asunto(s)
Metaloproteinasa 7 de la Matriz , Neoplasias Pancreáticas , Animales , Línea Celular Tumoral , Movimiento Celular , Humanos , Metaloproteinasa 7 de la Matriz/metabolismo , Metaloproteinasa 7 de la Matriz/uso terapéutico , Ratones , Invasividad Neoplásica/patología , Neoplasias Pancreáticas/metabolismo , Transducción de Señal , Neoplasias Pancreáticas
5.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34830286

RESUMEN

Hormonal factors may participate in the development and progression of glioblastoma, the most aggressive primary tumor of the central nervous system. Many studies have been conducted on the possible involvement of estrogen receptors (ERs) in gliomas. Since there is a tendency for a reduced expression of ERs as the degree of malignancy of such tumors increases, it is important to understand the role of these receptors in the progression and treatment of this disease. ERs belong to the family of nuclear receptors, although they can also be in the plasmatic membrane, cytoplasm and mitochondria. They are classified as estrogen receptors alpha and beta (ER⍺ and ERß), each with different isoforms that have a distinct function in the organism. ERs regulate multiple physiological and pathological processes through the activation of genomic and nongenomic pathways in the cell. Nevertheless, the role of each isoform in the development and progression of glioblastoma is not completely clear. Diverse in vitro and in vivo studies have shown encouraging results for endocrine therapy as a treatment for gliomas. At the same time, many questions have arisen concerning the nature of ERs as well as the mechanism of action of the proposed drugs. Hence, the aim of the current review is to describe the drugs that could possibly be utilized in endocrine therapy for the treatment of high-grade gliomas, analyze their interaction with ERs, and explore the involvement of these drugs and receptors in resistance to standard chemotherapy.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Terapia de Reemplazo de Hormonas/métodos , Terapia Molecular Dirigida/métodos , Antineoplásicos/uso terapéutico , Inhibidores de la Aromatasa/uso terapéutico , Hormona Liberadora de Gonadotropina/agonistas , Humanos , Isoformas de Proteínas/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
6.
Cancers (Basel) ; 13(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065335

RESUMEN

Drug resistance to existing anticancer agents is a growing clinical concern, with many first line treatments showing poor efficacy in treatment plans of some cancers. Resistance to platinum agents, such as cisplatin, is particularly prevalent in the treatment of ovarian cancer, one of the most common cancers amongst women in the developing world. Therefore, there is an urgent need to develop next generation of anticancer agents which can overcome resistance to existing therapies. We report a new series of organoruthenium(II) complexes bearing structurally modified pyrithione ligands with extended aromatic scaffold, which overcome platinum and adriamycin resistance in human ovarian cancer cells. The mechanism of action of such complexes appears to be unique from that of cisplatin, involving G1 cell cycle arrest without generation of cellular ROS, as is typically associated with similar ruthenium complexes. The complexes inhibit the enzyme thioredoxin reductase (TrxR) in a model system and reduce cell motility towards wound healing. Importantly, this work highlights further development in our understanding of the multi-targeting mechanism of action exhibited by transition metal complexes.

7.
Oncol Lett ; 19(1): 359-367, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31897148

RESUMEN

Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, with the presence of chemoresistance contributing to the poor prognosis. Heat Shock Proteins (HSPs) genes are activated in response to pathophysiological stress and serve a role in a variety of stages in carcinogenesis, acting primarily as anti-apoptotic agents and in chemotherapy resistance in a variety of tumor types. The current study evaluated the HSP gene expression profile in women with ovarian cancer (OC) and their correlation with clinical and pathological aspects of patients with OC. A total of 51 patients included in the current study were divided into four groups: Primary Epithelial Ovarian Cancer (EOC; n=14), metastatic EOC (n=11), ovarian serous cystadenoma (n=7) and no evidence of ovarian malignancy or control groups (n=19). RNA extraction and reverse transcription-quantitative (RT-q) PCR was then performed on the samples obtained. RT-qPCR was performed to compare TNF receptor associated protein 1 (TRAP1), heat shock protein family (HSP) HSPB1, HSPD1, HSPA1A and HSPA1L expression in primary and metastatic EOCs. TRAP1, HSPB1, HSPD1, HSPA1A and HSPA1L gene expression did not differ among groups. HSPA1A, HSPA1L and TRAP1 were revealed to be underexpressed in the primary and metastatic EOC groups, with HSPA1L exhibiting the lowest expression. TRAP1 expression was higher in tumors at stages I/II compared with those at stages III/IV. No correlation was exhibited between HSP expression and age, menarche, menopause, parity, period after menopause initiation, cytoreduction, CA-125 or overall and disease-free survival. HSPA1A was negatively correlated with the risk of mortality from OC. The results indicated that the downregulation of HSPA1A, HSPA1L and TRAP1 could be associated with the clinical prognostic features of women with EOC.

8.
Biochem Biophys Rep ; 9: 86-94, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28955993

RESUMEN

Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor characterized by rapid progression. The mechanisms that lead to a shift from initial therapeutic sensitivity to ultimate therapeutic resistance are poorly understood. Although the SCLC genomic landscape led to the discovery of promising agents targeting genetic alterations that were already under investigation, results have been disappointing. Achievements in targeted therapeutics have not been observed for over 30 years. Therefore, the underlying disease biology and novel targets urgently require a better understanding. Epigenetic regulation is deeply involved in the cellular plasticity that could shift tumor cells to the malignant phenotype. We have focused on a histone modifier, LSD1, that is overexpressed in SCLC and is a potent therapeutic target. Interestingly, the LSD1 splice variant LSD1+8a, the expression of which has been reported to be restricted to neural tissue, was detected and was involved in the expression of neuroendocrine marker genes in SCLC cell lines. Cells with high expression of LSD1+8a were resistant to CDDP and LSD1 inhibitor. Moreover, suppression of LSD1+8a inhibited cell proliferation, indicating that LSD1+8a could play a critical role in SCLC. These findings suggest that LSD1+8a should be considered a novel therapeutic target in SCLC.

9.
Cell Chem Biol ; 24(6): 737-750.e6, 2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28579361

RESUMEN

Microtubule-targeting agents (MTAs) are some of the clinically most successful anti-cancer drugs. Unfortunately, instances of multidrug resistances to MTA have been reported, which highlights the need for developing MTAs with different mechanistic properties. One less explored class of MTAs are [1,2,4]triazolo[1,5-a]pyrimidines (TPs). These cytotoxic compounds are microtubule-stabilizing agents that inexplicably bind to vinblastine binding site on tubulin, which is typically targeted by microtubule-destabilizing agents. Here we used cellular, biochemical, and structural biology approaches to address this apparent discrepancy. Our results establish TPs as vinca-site microtubule-stabilizing agents that promote longitudinal tubulin contacts in microtubules, in contrast to classical microtubule-stabilizing agents that primarily promote lateral contacts. Additionally we observe that TPs studied here are not affected by p-glycoprotein overexpression, and suggest that TPs are promising ligands against multidrug-resistant cancer cells.


Asunto(s)
Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Pirimidinas/farmacología , Triazoles/farmacología , Tubulina (Proteína)/metabolismo , Alcaloides de la Vinca/metabolismo , Sitios de Unión , Línea Celular Tumoral , Humanos , Ligandos , Modelos Moleculares , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína , Tubulina (Proteína)/química
10.
Pathol Oncol Res ; 23(3): 665-671, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28025785

RESUMEN

Organic cation transporter 1 (OCT1) is one of the membrane proteins in the large solute carrier (SLC) family. It participates in the transport of organic cations, i.e. nutrients, neurotransmitters, metabolites or drugs in an electrogenic manner and translocate various cationic cytostatics. Knowledge concerning the expression of drug transporters in tumor cells may help to develop cytotoxic agents that are targeted to specific tumors. OCT1 expression and its relationship to the proliferation of cancer cells, development of metastases and resistance to chemotherapy has been observed in solid tumors. There is no data concerning the significance of OCT1 expression in the clinical course and treatment results in acute myeloid leukemia (AML). The objective of the study was firstly to evaluate OCT1 mRNA expression in patients with newly diagnosed de novo AML, and secondly to compare the obtained results to the healthy control group as well as analyze them according to leukemia subtypes, CD34 expression, cytogenetic and molecular factors and treatment results. 101 patients with AML, excluding the subtype classified as M3 by French-American-British (FAB) criteria, were analyzed. The control group consisted of 26 healthy individuals. The evaluated material was bone marrow (BM). Real-time quantitative polymerase chain reaction (RQ-PCR) was used in the study as a method of evaluating OCT1 mRNA expression. The study showed a statistically significant lower expression of OCT1 mRNA in patients with AML in comparison to the control group. The level of OCT1 mRNA expression was lowest for CD34+ leukemia. No significant correlation between OCT1 mRNA expression and cytogenetic and molecular factors was observed. A significant influence of OCT1 mRNA expression on the clinical outcome of the disease was observed: patients with lower expression had higher chances of achieving complete remission (CR) and longer overall survival (OS).


Asunto(s)
Leucemia Mieloide Aguda/genética , Factor 1 de Transcripción de Unión a Octámeros/genética , Adulto , Anciano , Anciano de 80 o más Años , Antígenos CD34/genética , Femenino , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Pronóstico , ARN Mensajero/genética , Inducción de Remisión , Adulto Joven
11.
Bull Math Biol ; 78(6): 1218-37, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27337966

RESUMEN

Resistance to chemotherapy is a major cause of cancer treatment failure. The processes of resistance induction and selection of resistant cells (due to the over-expression of the membrane transporter P-glycoprotein, P-gp) are well documented in the literature, and a number of mathematical models have been developed. However, another process of transfer of resistant characteristics is less well known and has received little attention in the mathematical literature. In this paper, we discuss the potential of simple mathematical models to describe the process of resistance transfer, specifically P-gp transfer, in mixtures of resistant and sensitive tumor cell populations. Two different biological hypotheses for P-gp transfer are explored: (1) exchange through physical cell-cell connections and (2) through microvessicles released to the culture medium. Two models are developed which fit very well the observed population growth dynamics. The potential and limitations of these simple "global" models to describe the aforementioned biological processes involved are discussed on the basis of the results obtained.


Asunto(s)
Resistencia a Antineoplásicos/fisiología , Modelos Biológicos , Neoplasias/tratamiento farmacológico , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/fisiología , Transporte Biológico Activo , Comunicación Celular/fisiología , Línea Celular Tumoral , Proliferación Celular , Micropartículas Derivadas de Células/fisiología , Humanos , Modelos Logísticos , Conceptos Matemáticos , Neoplasias/patología , Neoplasias/fisiopatología
12.
Clin Breast Cancer ; 16(2): 113-22.e1, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26774497

RESUMEN

INTRODUCTION: Inflammatory breast cancer (IBC) is an aggressive and rare cancer with a poor prognosis and a need for novel targeted therapeutic strategies. Preclinical IBC data showed strong activation of the phosphatidylinositide-3-kinase/mammalian target of rapamycin (mTOR) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways, and expression of inflammatory cytokines and tumor-associated macrophages (TAMs). PATIENTS AND METHODS: Archival tumor tissue from 3 disease types (IBC treated with neoadjuvant chemotherapy [NAC], n = 45; invasive ductal carcinoma [IDC] treated with NAC [n = 24; 'treated IDC'; and untreated IDC [n = 27; 'untreated IDC']) was analyzed for the expression of biomarkers phospho-S6 (pS6) (mTOR), phospho-JAK2 (pJAK2), pSTAT3, interleukin (IL)-6, CD68 (monocytes, macrophages), and CD163 (TAMs). Surrounding nontumor tissue was also analyzed. RESULTS: Biomarker levels and surrogate activity according to site-specific phosphorylation were shown in the tumor tissue of all 3 disease types but were greatest in IBC and treated IDC and least in untreated IDC for pS6, pJAK2, pSTAT3, and IL-6. Of 37 IBC patients with complete biomarker data available, 100% were pS6-positive and 95% were pJAK2-positive. In nontumor tissue, biomarker levels were observed in all groups but were generally greatest in untreated IDC and least in IBC, except for JAK2. CONCLUSION: IBC and treated IDC display similar levels of mTOR and JAK2 biomarker activation, which suggests a potential mechanism of resistance after NAC. Biomarker levels in surrounding nontumor tissue suggested that the stroma might be activated by chemotherapy and resembles the oncogenic tumor-promoting environment. Activation of pS6 and pJAK2 in IBC might support dual targeting of the mTOR and JAK/STAT pathways, and the need for prospective studies to investigate combined targeted therapies in IBC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Neoplasias Inflamatorias de la Mama/patología , Janus Quinasa 2/metabolismo , Terapia Neoadyuvante , Factor de Transcripción STAT3/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Técnicas para Inmunoenzimas , Neoplasias Inflamatorias de la Mama/tratamiento farmacológico , Neoplasias Inflamatorias de la Mama/metabolismo , Persona de Mediana Edad , Invasividad Neoplásica , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Estadificación de Neoplasias , Pronóstico , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Transducción de Señal/efectos de los fármacos , Tasa de Supervivencia
13.
Breast ; 22(6): 1026-33, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24063766

RESUMEN

Triple negative breast cancer is a heterogeneous group of tumors, lacking the expression of estrogen, progesterone and HER-2 receptors. As frequency, it accounts about 15-20% of all breast cancers. Although in the last years there was a "boom" in publishing over this issue, multiple molecular classifications being elaborated, "the triple negative breast cancer odyssey " is still far away from ending, as the complicated molecular pathways of pathogenesis and drug resistance mechanisms remain yet insufficiently explored. The aim of this review is presentation of molecular signatures that could predict outcome and drug resistance in triple negative breast cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Expresión Génica , Humanos , Neoplasias de la Mama Triple Negativas/clasificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
14.
Biomed Rep ; 1(5): 702-706, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24649013

RESUMEN

As a transcription factor, the Wilms' tumor 1 (WT1) gene plays an important role in leukemogenesis. The impact of WT1 gene mutations has been reported in acute myeloid leukemia (AML). However, the number of available studies on the spatial configuration changes following WT1 mutation is limited. In this study, we sequenced the mutation in exon 7 of the WT1 gene in 60 children with newly diagnosed AML and the spatial configuration of WT1 with frameshift mutations in exon 7 was evaluated using the software for homology modeling and optimization of molecular dynamics. Three cases with frameshift mutations in exon 7 were identified (3/60; mutation rate, 5%). One case had a mutation that had been previously described, whereas the remaining two mutations were first described in our study. Of the three cases, one case presented with antecedent myelodysplastic syndrome (MDS) and the remaining two cases exhibited primary resistance to induction chemotherapy. The spatial configuration analysis demonstrated that the three mutations affected the spatial structure of exon 7 and even affected exon 8 compared to its wild-type. This study demonstrated that the frameshift mutation in exon 7 of the WT1 gene is a poor prognostic factor for children with AML, partly through the spatial configuration changes following frameshift mutations of WT1, which highlights the structure-based function analysis and may facilitate the elucidation of the pathogenesis underlying WT1 gene mutations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA