Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274631

RESUMEN

For space missions to either the Moon or Mars, protecting mechanical moving parts from the abrasive effects of prevailing surface dust is crucial. This paper compares the abrasive effects of two lunar and two Martian simulant regoliths using special pin-on-disc tests on a stainless steel/polytetrafluoroethylene (PTFE) sealing material pair. Due to the regolith particles entering the contact zone, a three-body abrasion mechanism took place. We found that friction coefficients stabilised between 0.2 and 0.4 for all simulants. Wear curves, surface roughness measurements, and microscopic images all suggest a significantly lower abrasion effect of the Martian regoliths than that of the lunar ones. It applies not only to steel surfaces but also to the PTFE pins. The dominant abrasive micro-mechanism of the disc surface is micro-ploughing in the case of all tests, while the transformation of the counterface is mixed. The surface of pin material is plastically transformed through micro-ploughing, while the material is removed through micro-cutting due to the slide over hard soil particles.

2.
Materials (Basel) ; 17(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39124297

RESUMEN

The development of devices for the in situ resource utilization (ISRU) of lunar surface powder (regolith) by means of microwaves needs regolith simulants with electromagnetic properties similar to the lunar regolith. This document deals with the measurement of complex permittivity and dielectric loss tangent of the aforementioned simulants at ambient temperature from 400 MHz to 20 GHz, performing measurements using two lunar dust simulants, EAC-1A and JSC-2A, resulting, on the one hand, in permittivity values of ε'=-0.0432f+4.0397 for the EAC-1A lunar dust simulant and ε'=-0.0432f+4.0397 for the JSC-2A simulant, and on the other hand, in loss tangent values of tanδe=-0.0015f+0.0659 for the EAC-1A powder and tanδe=-0.0039f+0.1429 for the JSC-2A powder. In addition, further studies are carried out taking into account the humidity of the samples and their densities at room temperature. The obtained results are applicable for comparing the measured values of EAC-1A and JSC-2A between them and with other previously measured simulants and real samples. The measurements are carried out by applying two different nonresonant techniques: Open-Ended Coaxial Probe (OECP) and transmission line. For this purpose, the DAK and EpsiMu commercial kits are used, respectively.

3.
Space Sci Rev ; 220(6): 62, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176178

RESUMEN

As a first step in preparing for the return of samples from the Moon by the Artemis Program, NASA initiated the Apollo Next Generation Sample Analysis Program (ANGSA). ANGSA was designed to function as a low-cost sample return mission and involved the curation and analysis of samples previously returned by the Apollo 17 mission that remained unopened or stored under unique conditions for 50 years. These samples include the lower portion of a double drive tube previously sealed on the lunar surface, the upper portion of that drive tube that had remained unopened, and a variety of Apollo 17 samples that had remained stored at -27 °C for approximately 50 years. ANGSA constitutes the first preliminary examination phase of a lunar "sample return mission" in over 50 years. It also mimics that same phase of an Artemis surface exploration mission, its design included placing samples within the context of local and regional geology through new orbital observations collected since Apollo and additional new "boots-on-the-ground" observations, data synthesis, and interpretations provided by Apollo 17 astronaut Harrison Schmitt. ANGSA used new curation techniques to prepare, document, and allocate these new lunar samples, developed new tools to open and extract gases from their containers, and applied new analytical instrumentation previously unavailable during the Apollo Program to reveal new information about these samples. Most of the 90 scientists, engineers, and curators involved in this mission were not alive during the Apollo Program, and it had been 30 years since the last Apollo core sample was processed in the Apollo curation facility at NASA JSC. There are many firsts associated with ANGSA that have direct relevance to Artemis. ANGSA is the first to open a core sample previously sealed on the surface of the Moon, the first to extract and analyze lunar gases collected in situ, the first to examine a core that penetrated a lunar landslide deposit, and the first to process pristine Apollo samples in a glovebox at -20 °C. All the ANGSA activities have helped to prepare the Artemis generation for what is to come. The timing of this program, the composition of the team, and the preservation of unopened Apollo samples facilitated this generational handoff from Apollo to Artemis that sets up Artemis and the lunar sample science community for additional successes.

4.
Extremophiles ; 28(3): 34, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044042

RESUMEN

The extremophile bacterium Deinococcus radiodurans is characterized by its ability to survive and sustain its activity at high levels of radiation and is considered an organism that might survive in extraterrestrial environments. In the present work, we studied the combined effects of temperature and chlorine-containing salts, with focus on perchlorate salts which have been detected at high concentrations in Martian regolith, on D. radiodurans activity (CO2 production rates) and viability after incubation in liquid cultures for up to 30 days. Reduced CO2 production capacity and viability was observed at high perchlorate concentrations (up to 10% w/v) during incubation at 0 or 25 °C. Both the metabolic activity and viability were reduced as the perchlorate and chloride salt concentration increased and temperature decreased, and an interactive effect of temperature and salt concentration on the metabolic activity was found. These results indicate the ability of D. radiodurans to remain metabolically active and survive in low temperature environments rich in perchlorate.


Asunto(s)
Deinococcus , Percloratos , Percloratos/metabolismo , Deinococcus/metabolismo , Dióxido de Carbono/metabolismo , Temperatura , Cloruros/metabolismo , Viabilidad Microbiana
5.
Polymers (Basel) ; 16(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38891528

RESUMEN

The construction of lunar bases represents a fundamental challenge for deep space exploration, lunar research, and the exploitation of lunar resources. In-situ resource utilization (ISRU) technology constitutes a pivotal tool for constructing lunar bases. Using lunar regolith to create geopolymers as construction materials offers multiple advantages as an ISRU technique. This paper discusses the principle of geopolymer for lunar regolith, focusing on the reaction principle of geopolymer. It also analyzes the applicability of geopolymer under the effects of the lunar surface environment and the differences between the highland and mare lunar regolith. This paper summarizes the characteristics of existing lunar regolith simulants and the research on the mechanical properties of lunar regolith geopolymers using lunar regolith simulants. Highland lunar regolith samples contain approximately 36% amorphous substances, the content of silicon is approximately 28%, and the ratios of Si/Al and Si/Ca are approximately 1.5 and 2.6, respectively. They are more suitable as precursor materials for geopolymers than mare samples. The compressive strength of lunar regolith geopolymer is mainly in the range of 18~30 MPa. Sodium silicate is the most commonly utilized activator for lunar regolith geopolymers; alkalinity in the range of 7% to 10% and modulus in the range of 0.8 to 2.0 are suitable. A vacuum environment and multiple temperature cycles reduce the mechanical properties of geopolymers by 8% to 70%. Future research should be concentrated on the precision control of the lunar regolith's chemical properties and the alkali activation efficacy of geopolymers in the lunar environment.

6.
Sci Total Environ ; 935: 173299, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38761954

RESUMEN

As humanity embarks on the journey to establish permanent colonies on Mars, ensuring a reliable source of sustenance will be crucial. Therefore, detailed studies regarding crop cultivation using Martian simulants are of great importance. This study aimed to grow wheat on substrates based on soil and Martian simulants, with the addition of vermicompost, to investigate the differences in wheat development. Basic physical and chemical properties of substrates were examined, including determination of macro- and microelements as well as their microbiological properties. Plant growth parameters were also determined. The addition of vermicompost positively affected wheat grown on soil, but the effect on plants grown on substrate with Martian simulants was negligible. Comparing the microbiological and chemical components, it was observed that plants can defend themselves against the negative effects of growth on the Martian simulants, but their success depends on having the PGPR (Plant growth-promoting rhizobacteria) present, which can provide the plant with additional nitrogen. The presence of beneficial symbiotic microbiota will allow the wheat to wait out the negative growth time rather than adapt to the regolith environment.


Asunto(s)
Suelo , Triticum , Triticum/crecimiento & desarrollo , Suelo/química , Marte , Microbiología del Suelo , Microbiota/efectos de los fármacos , Compostaje/métodos
7.
Small ; : e2310954, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38591858

RESUMEN

Constructing a semi-permanent base on the moon or Mars will require maximal use of materials found in situ and minimization of materials and equipment transported from Earth. This will mean a heavy reliance on regolith (Lunar or Marian soil) and water, supplemented by small quantities of additives fabricated on Earth. Here it is shown that SiO2-based powders, as well as Lunar and Martian regolith simulants, can be fabricated into building materials at near-ambient temperatures using only a few weight-percent of carbon nanotubes as a binder. These composites have compressive strength and toughness up to 100 MPa and 3 MPa respectively, higher than the best terrestrial concretes. They are electrically conductive (>20 S m-1) and display an extremely large piezoresistive response (gauge factor >600), allowing these composites to be used as internal sensors to monitor the structural health of extra-terrestrial buildings.

8.
Front Plant Sci ; 15: 1351613, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434436

RESUMEN

NASA envisions a future where humans establish a thriving colony on the Moon by 2050. Plants will be essential for this endeavor, but little is known about their adaptation to extraterrestrial bodies. The capacity to grow plants in lunar regolith would represent a major step towards this goal by minimizing the reliance on resources transported from Earth. Recent studies reveal that Arabidopsis thaliana can germinate and grow on genuine lunar regolith as well as on lunar regolith simulant. However, plants arrest in vegetative development and activate a variety of stress response pathways, most notably the oxidative stress response. Telomeres are hotspots for oxidative damage in the genome and a marker of fitness in many organisms. Here we examine A. thaliana growth on a lunar regolith simulant and the impact of this resource on plant physiology and on telomere dynamics, telomerase enzyme activity and genome oxidation. We report that plants successfully set seed and generate a viable second plant generation if the lunar regolith simulant is pre-washed with an antioxidant cocktail. However, plants sustain a higher degree of genome oxidation and decreased biomass relative to conventional Earth soil cultivation. Moreover, telomerase activity substantially declines and telomeres shorten in plants grown in lunar regolith simulant, implying that genome integrity may not be sustainable over the long-term. Overcoming these challenges will be an important goal in ensuring success on the lunar frontier.

9.
J Fungi (Basel) ; 9(10)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37888232

RESUMEN

The aim of this study was to evaluate the potential of Aspergillus tubingensis in extracting metals from rocks simulating Martian regolith through biomining. The results indicated that the fungal strain produced organic acids, particularly oxalic acid, in the first five days, leading to a rapid reduction in the pH of the culture medium. This acidic medium is ideal for bioleaching, a process that employs acidolysis and complexolysis to extract metals from rocks. Additionally, the strain synthesized siderophores, molecules capable of mobilizing metals from solid matrices, as verified by the blue CAS colorimetric test. The secretion of siderophores in the culture medium proved advantageous for biomining. The siderophores facilitated the leaching of metal ions, such as manganese, from the rock matrix into the acidified water solution. In addition, the susceptibility of the Martian regolith simulant to the biomining process was assessed by determining the particle size distribution, acid composition after treatment, and geochemical composition of the rock. Although the preliminary results demonstrate successful manganese extraction, further research is required to optimize the extraction technique. To conclude, the A. tubingensis strain exhibits promising abilities in extracting metals from rocks through biomining. Its use could prove useful in future in situ mining operations and environmental remediation efforts. Further research is required to optimize the process and evaluate its feasibility on a larger scale.

10.
Materials (Basel) ; 16(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687489

RESUMEN

Recently, the goal of space exploration has shifted from the incognito of the solar system to the Moon. Concepts like human permanence on the Moon and thermal protective structures made with ISRU (in situ resource utilization) of raw materials have started to be implemented. By limiting the need to launch supplies from the Earth, the paradigm of spaceflight is changed, privileging the vanguard of the utilisation of resources in situ. Still, the main challenges of surviving the radiation dose and the cryogenic temperatures of the lunar night remain. Recent studies have demonstrated how innovative composite materials can help reduce the temperature stress on exploration vehicles. This research presents the material properties of aerogel insulating materials combined with LHS (lunar highlands simulant) regolith obtained by freeze frying. Organic-based aerogels with different percentages of LHS have been analysed in terms of material, morphology, and thermal properties.

11.
Materials (Basel) ; 16(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37512450

RESUMEN

Due to payload weight limitations and human vulnerability to harsh space conditions, it is preferable that the potential landing location for humans has an already constructed habitat preferably made from in situ materials. Therefore, the prospect of utilizing a readily available Martian material, such as regolith, in an easily programmable manufacturing method, such as 3D printing, is very lucrative. The goal of this research is to explore a mixture containing Martian regolith for the purposes of 3D printing in unfavorable conditions. A binder consisting of water and sodium silicate is used. Martian conditions are less favorable for the curing of such a mixture because of low temperature and pressure on the surface of the planet. In order to evaluate mechanical properties of the mixture, molding and 3D printing were conducted at various curing conditions and the mechanical and physical characteristics were compared. Due to the combination of low reaction speed at low temperature (2 °C) and rapid water evaporation at low pressure (0.1-0.01 bar), curing of the specimens in Martian conditions yielded unsatisfactory results. The reaction medium (water) evaporated before the curing reaction could progress enough to form a proper geopolymer. The specimens cured at high temperatures (60 °C) showed satisfactory results, with flexural strength up to 9 MPa when cured at a temperature of 60 °C and pressure of 1 bar. The specimens manufactured by 3D printing showed ultimate flexural strength that was 20% lower than that of equivalent molded specimens. Exploring potential mixture modifications and performing improved tests using the basis laid in this research can lead to an effective and realistic way of utilizing Martian regolith for unmanned 3D-printing purposes with minimal investment.

12.
Biomedicines ; 11(7)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37509559

RESUMEN

The lunar dust problem was first formulated in 1969 with NASA's first successful mission to land a human being on the surface of the Moon. Subsequent Apollo missions failed to keep the dust at bay, so exposure to the dust was unavoidable. In 1972, Harrison Schmitt suffered a brief sneezing attack, red eyes, an itchy throat, and congested sinuses in response to lunar dust. Some additional Apollo astronauts also reported allergy-like symptoms after tracking dust into the lunar module. Immediately following the Apollo missions, research into the toxic effects of lunar dust on the respiratory system gained a lot of interest. Moreover, researchers believed other organ systems might be at risk, including the skin and cornea. Secondary effects could translocate to the cardiovascular system, the immune system, and the brain. With current intentions to return humans to the moon and establish a semi-permanent presence on or near the moon's surface, integrated, end-to-end dust mitigation strategies are needed to enable sustainable lunar presence and architecture. The characteristics and formation of Martian dust are different from lunar dust, but advances in the research of lunar dust toxicity, mitigation, and protection strategies can prove strategic for future operations on Mars.

13.
Syst Appl Microbiol ; 46(4): 126424, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37167755

RESUMEN

A polyphasic taxonomic approach was used to characterize the four strains P2653T, P2652, P2498, and P2647, isolated from Antarctic regolith samples. Initial genotype screening performed by PCR fingerprinting based on repetitive sequences showed that the isolates studied formed a coherent cluster separated from the other Pseudomonas species. Identification results based on 16S rRNA gene sequences showed the highest sequence similarity with Pseudomonas graminis (99.7%), which was confirmed by multilocus sequence analysis using the rpoB, rpoD, and gyrB genes. Genome sequence comparison of P2653T with the most related P. graminis type strain DSM 11363T revealed an average nucleotide identity of 92.1% and a digital DNA-DNA hybridization value of 46.6%. The major fatty acids for all Antarctic strains were C16:0, Summed Feature 3 (C16:1ω7c/C16:1ω6c) and Summed Feature 8 (C18:1ω7c/C18:1ω6c). The predominant respiratory quinone was Q-9, and the major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, and phosphatidylglycerol. The regolith strains could be differentiated from related species by the absence of arginine dihydrolase, ornithine and lysine decarboxylase and by negative tyrosine hydrolysis. The results of this polyphasic study allowed the genotypic and phenotypic differentiation of four analysed strains from the closest related species, which confirmed that the strains represent a novel species within the genus Pseudomonas, for which the name Pseudomonas petrae sp. nov. is proposed with P2653T (CCM 8850T = DSM 112068T = LMG 30619T) as the type strain.


Asunto(s)
Genes Bacterianos , Fosfolípidos , Fosfolípidos/análisis , Regiones Antárticas , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Filogenia , Ácidos Grasos/análisis , Pseudomonas , ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
14.
Heliyon ; 9(3): e14683, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37020940

RESUMEN

The earthworms beneficial effects on soils may be promising to improve lunar soil fertility, enabling the use of local substrates for space farming. Herein, we investigated the effects of the lunar regolith simulant (LHS-1) at different concentrations in cow manure mixtures on the survival and fitness of Eisenia fetida. During 14 and 60-day experiments, although E. fetida showed an increased mortality with LHS-1 alone, most of the population survived. More numerous tunnels were observed when exposed to the higher concentrations of LHS-1 (poor in nutrients for earthworms). This may be related to an increased mobility for food search. The cocoons production was not affected by different substrate treatments, except for the highest concentration of LHS-1. No effects of different LHS-1 concentrations on the amount of ingested substrate were recorded. This study shows that E. fetida can potentially colonize lunar regolith representing a future valuable biological tool for supporting crops growth on the Moon.

15.
Astrobiology ; 23(3): 280-290, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36724478

RESUMEN

Ultraviolet shielding materials are potential ecological niches for biosignatures. Finding such materials on Mars would narrow the search for potentially habitable regions. A mini-goniometer was built to collect transmission spectra as a function of scattering angle for Mars analog regoliths (JSC Mars-1, basalt, cheto bentonite, and kieserite) and crystalline rock samples from the Haughton impact structure on Devon Island, Nunavut, in the Canadian High Arctic Archipelago. The transmission through the materials was assessed at ultraviolet and visible wavelengths and at different scattering angles. From the results, it is possible to classify the samples into UV transmitters and UV quenchers. UV transmitters are materials that favor transmittance of UV wavelengths compared to photosynthetically active radiation (PAR), while the UV quenchers are materials that effectively block UV radiation from propagating into the subsurface. Additionally, samples that are effective UV quenchers tend to have more isotropic scattering profiles, whereas UV transmitters tend to favor forward scattering profiles. Samples with greater porosity had greater overall transmission. The depths at which radioresistant microorganisms can exist on present-day Mars are estimated by modeling the transmission for regoliths and crystalline rocks under martian insolation. The depth at which LD90 occurs is found to range down to 0.3 mm, while still allowing up to 1000 kJ/m2 of PAR at those depths. Due to the exceptionally protective nature of JSC Mars-1, intimate mixtures of organisms and regolith will result in some organisms experiencing orders of magnitude less UV flux than others, even when protected by only a single grain of simulant.


Asunto(s)
Marte , Rayos Ultravioleta , Medio Ambiente Extraterrestre , Canadá
16.
J Environ Manage ; 325(Pt A): 116455, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36242975

RESUMEN

The in-situ resource utilisation (ISRU), in terms of native rocky materials and astronaut wastes, is crucial in contests of soil-based space-farming. Nevertheless, extra-terrestrial soils are very different from Earth soils, lacking any form of organic carbon and associated macro and micronutrients. In this research, we aimed to study and modify two commercially available Lunar and Martian regolith simulants (LHS-1 from Exolith Lab and MMS-1 from Martian Garden) to make them an adequate medium for plant growth. Lettuce was chosen as reference crop to guide the discussion on the results obtained. To reach this main objective, we added to simulants a commercially available monogastric-based organic manure chosen as a substitute of a possible organic amendment produced onboard. The simulant/manure mixture rates were 100:0, 90:10, 70:30, 50:50; w:w. As expected, an approximately linear increase of total and bioavailable contents of macro (N, S, P, Ca, K, Mg) and micro (Fe, Mn, Cu, Zn) nutrients with increasing manure addition to simulants was observed. On the other hand, the very high pH of manure (pH, 9.02) along with its salinity (EC, 6.7 dS m-1) and sodicity (Na, 5.3 g kg-1), did not correct the already high pH of simulants (very high for LHS-1), but rather raised their soluble salt content and sodium amount on the exchange complex. In addition, an increase of toxic soluble aluminium and heavy elements (Pb, Ni, Cr, V) was observed, mainly in the strongly alkaline lunar simulant/manure mixtures. The addition of an organic source also produced a generalised improvement of water retention and hydraulic conductivity of both regolith simulants, in proportion to the percentage of manure addiction. For both situations, the best mixture ratio was 70:30. In terms of water retained, the LHS-1 mixtures benefited more than the MMS-1 ones by manure addition since water was held more in the "dry" (between -100 and -600 cm of matric potential head) than in the "humid" (between -25 and -100 cm of matric potential head) region of water retention. This would make LHS-1 mixtures more useful for cultivation of lettuce, at least in terms of physico-hydraulic properties. Nevertheless, the overall characterisation of the mixtures unveiled that MMS-1-based substrates can ensure better agronomic performances than LHS-1 ones, mainly due to lower pHs and higher nutrient availability; this divergent fertility was particularly evident at 90:10 simulant/manure rate and tend to be mitigated by increasing the levels of manure.


Asunto(s)
Estiércol , Marte , Suelo/química , Medio Ambiente Extraterrestre , Lactuca , Agua
17.
Sci Total Environ ; 854: 158774, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108852

RESUMEN

In the last decade, the exploration of deep space has become the objective of the national space programs of many countries. The International Space Exploration Coordination Group has set a roadmap whose long-range strategy envisions the expansion of human presence in the solar system to progress with exploration and knowledge and to accelerate innovation. Crewed missions to Mars could be envisaged by 2040. In this scenario, finding ways to use the local resources for the provision of food, construction materials, propellants, pharmaceuticals is needed. Plants are important resources for deep space manned missions because they produce phytochemicals of pharmaceutical relevance, are sources of food and provide oxygen which is crucial in bioregenerative life support systems. Growth analysis and plant biomass yield have been previously evaluated on Martian regolith simulants; however, molecular approaches employing gene expression analysis and proteomics are still missing. The present work aims at filling this gap by providing molecular data on a representative member of the Poaceae, Lolium multiflorum Lam., grown on potting soil and a Martian regolith simulant (MMS-1). The molecular data were complemented with optical microscopy of root/leaf tissues and physico-chemical analyses. The results show that the plants grew for 2 weeks on regolith simulants. The leaves were bent downwards and chlorotic, the roots developed a lacunar aerenchyma and small brownish deposits containing Fe were observed. Gene expression analysis and proteomics revealed changes in transcripts related to the phenylpropanoid pathway, stress response, primary metabolism and proteins involved in translation and DNA methylation. Additionally, the growth of plants slightly but significantly modified the pH of the regolith simulants. The results here presented constitute a useful resource to get a comprehensive understanding of the major factors impacting the growth of plants on MMS-1.


Asunto(s)
Lolium , Marte , Vuelo Espacial , Humanos , Medio Ambiente Extraterrestre/química , Italia
18.
Materials (Basel) ; 15(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36500056

RESUMEN

The return to the Moon is an important short-term goal of NASA and other international space agencies. To minimize mission risks, technologies, such as rovers or regolith processing systems, must be developed and tested on Earth using lunar regolith simulants that closely resemble the properties of real lunar soil. So far, no singular lunar simulant can cover the multitude of use cases that lunar regolith involves, and most available materials are poorly characterized. To overcome this major gap, a unique modular system for flexible adaptable novel lunar regolith simulants was developed and chemically characterized in earlier works. To supplement this, the present study provides comprehensive investigations regarding geotechnical properties of the three base regolith simulant systems: TUBS-M, TUBS-T, and TUBS-I. To evaluate the engineering and flow properties of these heterogeneous materials under various conditions, shear tests, particle size analyses, scanning electron microscope observations, and density investigations were conducted. It was shown that small grains <25 µm (lunar dust) are highly compressive and cohesive even at low external stress. They are particularly important as a large amount of fine dust is present in lunar regolith and simulants (x50 = 76.7 to 96.0 µm). Further, ring shear and densification tests revealed correlations with damage mechanisms caused by local stress peaks for grains in the mm range. In addition, an explanation for the occurrence of considerable differences in the literature-based data for particle sizes was established by comparing various measurement procedures. The present study shows detailed geotechnical investigations of novel lunar regolith simulants, which can be used for the development of equipment for future lunar exploration missions and in situ resource utilization under realistic conditions. The results also provide evidence about possible correlations and causes of known soil-induced mission risks that so far have mostly been described phenomenologically.

19.
Sensors (Basel) ; 22(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36502218

RESUMEN

The project Lunar Volatiles Mobile Instrumentation-Extended (LUVMI-X) developed an initial system design as well as payload and mobility breadboards for a small, lightweight rover dedicated for in situ exploration of the lunar south pole. One of the proposed payloads is the Volatiles Identification by Laser Analysis instrument (VOILA), which uses laser-induced breakdown spectroscopy (LIBS) to analyze the elemental composition of the lunar surface with an emphasis on sampling regolith and the detection of hydrogen for the inference of the presence of water. It is designed to analyze targets in front of the rover at variable focus between 300 mm and 500 mm. The spectrometer covers the wavelength range from 350 nm to 790 nm, which includes the hydrogen line at 656.3 nm as well as spectral lines of most major rock-forming elements. We report here the scientific input that fed into the concept and design of the VOILA instrument configuration for the LUVMI-X rover. Moreover, we present the measurements performed with the breadboard laboratory setup for VOILA at DLR Berlin that focused on verifying the performance of the designed LIBS instrument in particular for the detection and quantification of hydrogen and other major rock forming elements in the context of in situ lunar surface analysis.


Asunto(s)
Rayos Láser , Luna , Análisis Espectral/métodos , Agua , Hidrógeno
20.
Natl Sci Rev ; 9(11): nwac175, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36381216

RESUMEN

Temperature probes onboard the Chang'E-4 (CE-4) spacecraft provide the first in situ regolith temperature measurements from the far side of the Moon. We present these temperature measurements with a customized thermal model and reveal the particle size of the lunar regolith at the CE-4 landing site to be ∼15 µm on average over depth, which indicates an immature regolith below the surface. In addition, the conductive component of thermal conductivity is measured as ∼1.53 × 10-3 W m-1 K-1 on the surface and ∼8.48 × 10-3 W m-1 K-1 at a depth of 1 m. The average bulk density is ∼471 kg m-3 on the surface and ∼824 kg m-3 in the upper 30 cm of the lunar regolith. These thermophysical properties provide important additional 'ground truth' at the lunar far side, which is critical for the future analysis and interpretation of global temperature observations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA