Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.113
Filtrar
1.
Biomaterials ; 313: 122764, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39190941

RESUMEN

Currently, mitochondrial dysfunction caused by oxidative stress is a growing concern in degenerative diseases, notably intervertebral disc degeneration (IVDD). Dysregulation of the balance of mitochondrial quality control (MQC) has been considered the key contributor, while it's still challenging to effectively harmonize different MQC components in a simple and biologically safe way. Hydrogen gas (H2) is a promising mitochondrial therapeutic molecule due to its bio-reductivity and diffusibility across cellular membranes, yet its relationship with MQC regulation remains unknown. Herein, we propose a mitochondrial 'Birth-Death' coordinator achieved by an intelligent hydrogen nanogenerator (Fe@HP-OD), which can sustainably release H2 in response to the unique microenvironment in degenerated IVDs. Both in vitro and in vivo results prove alleviation of cellular oxidative stress and restoration of nucleus pulposus cells function, thereby facilitating successful IVD regeneration. Significantly, this study for the first time proposes the mitochondrial 'Birth-Death' coordination mechanism: 1) attenuation of overactivated mitochondrial 'Death' process (UPRmt and unselective mitophagy); and 2) activation of Adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway for mitochondrial 'Birth-Death' balance (mitochondrial biogenesis and controlled mitophagy). These pioneering findings can fill in the gaps in molecular mechanisms for H2 regulation on MQC homeostasis, and pave the way for future strategies towards restoring equilibrium of MQC system against degenerative diseases.


Asunto(s)
Hidrógeno , Degeneración del Disco Intervertebral , Mitocondrias , Estrés Oxidativo , Hidrógeno/química , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Regeneración/efectos de los fármacos , Disco Intervertebral/efectos de los fármacos , Humanos , Mitofagia/efectos de los fármacos , Ratas Sprague-Dawley , Masculino , Núcleo Pulposo/metabolismo , Ratas
2.
Biomaterials ; 313: 122768, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39232332

RESUMEN

As the most prominent and ideal modality in female fertility preservation, ovarian tissue cryopreservation, and transplantation often confront the challenge of ischemic damage and follicular loss from avascular transplantation. To surmount this impediment, we engineered a novel platelet-derived factors-encapsulated fibrin hydrogel (PFH), a paradigmatic biomaterial. PFH encapsulates autologous platelet-derived factors, utilizing the physiological blood coagulation cascade for precise local delivery of bioactive molecules. In our study, PFH markedly bolstered the success of avascular ovarian tissue transplantation. Notably, the quantity and quality of follicles were preserved with improved neovascularization, accompanied by decreased DNA damage, increased ovulation, and superior embryonic development rates under a Low-concentration Platelet-rich plasma-derived factors encapsulated fibrin hydrogel (L-PFH) regimen. At a stabilized point of tissue engraftment, gene expression analysis mirrored normal ovarian tissue profiles, underscoring the effectiveness of L-PFH in mitigating the initial ischemic insult. This autologous blood-derived biomaterial, inspired by nature, capitalizes on the blood coagulation cascade, and combines biodegradability, biocompatibility, safety, and cost-effectiveness. The adjustable properties of this biomaterial, even in injectable form, extend its potential applications into the broader realm of personalized regenerative medicine. PFH emerges as a promising strategy to counter ischemic damage in tissue transplantation, signifying a broader therapeutic prospect. (197 words).


Asunto(s)
Preservación de la Fertilidad , Hidrogeles , Isquemia , Neovascularización Fisiológica , Ovario , Femenino , Animales , Preservación de la Fertilidad/métodos , Neovascularización Fisiológica/efectos de los fármacos , Ovario/efectos de los fármacos , Hidrogeles/química , Isquemia/terapia , Humanos , Fibrina/química , Plasma Rico en Plaquetas/metabolismo
3.
Neurourol Urodyn ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282854

RESUMEN

AIMS: This study aimed to determine the efficacy and safety of iltamiocel investigational autologous muscle cell therapy in females with stress urinary incontinence (SUI). METHODS: Adult females were randomized 2:1 to iltamiocel (150 × 106 cells) or placebo and stratified by severity and prior SUI surgery. The primary objective was efficacy based on the frequency of stress incontinence episodes (SIE) recorded in a 3-day diary at 12 months posttreatment. After 12 months, placebo participants could elect to receive open-label iltamiocel. Efficacy and safety analyses were performed using all patients as treated populations. RESULTS: The study enrolled 311 patients, 297 were randomized to either iltamiocel (n = 199) or placebo (n = 98). Of the 295 participants that completed 12 months blinded follow-up, the proportion achieving the primary endpoint of ≥ 50% SIE reduction was not statistically different between treatment groups (52% vs. 53.6%; p = 0.798). A significantly greater proportion of iltamiocel participants in the prior SUI surgery stratum group achieved ≥ 75% SIE reduction compared with placebo, (40% vs. 16%; p = 0.037). Treatment response was maintained at 24 months in 78.4% and 64.9% of iltamiocel participants who achieved ≥ 50% and ≥ 75% SIE reduction, respectively, at Month 12. Adverse events related to the treatment were reported in 19 (9.5%) iltamiocel participants and 6 (6.1%) placebo participants. CONCLUSION: The study did not meet its primary endpoint however, iltamiocel cell therapy is safe and may be ideally suited to female patients who have undergone prior surgery for SUI. Additional study in this group of patients with high unmet medical needs is warranted. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01893138; EudraCT number: 2014-002919-41.

4.
Mol Cell Biochem ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285093

RESUMEN

Regenerative medicine has immense potential to revolutionize healthcare by using regenerative capabilities of stem cells. Microfluidics, a cutting-edge technology, offers precise control over cellular microenvironments. The integration of these two fields provides a deep understanding of stem cell behavior and enables the development of advanced therapeutic strategies. This critical review explores the use of microfluidic systems to culture and differentiate stem cells with precision. We examined the use of microfluidic platforms for controlled nutrient supply, mechanical stimuli, and real-time monitoring, providing an unprecedented level of detail in studying cellular responses. The convergence of stem cells and microfluidics holds immense promise for tissue repair, regeneration, and personalized medicine. It offers a unique opportunity to revolutionize the approach to regenerative medicine, facilitating the development of advanced therapeutic strategies and enhancing healthcare outcomes.

5.
Small Methods ; : e2400574, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39285832

RESUMEN

Green hydrogen (H2) is an essential component of global plans to reduce carbon emissions from hard-to-abate industries and heavy transport. However, challenges remain in the highly efficient H2 production from water electrolysis powered by renewable energies. The sluggish oxygen evolution restrains the H2 production from water splitting. Rational electrocatalyst designs for highly efficient H2 production and oxygen evolution are pivotal for water electrolysis. With the development of high-performance electrolyzers, the scale-up of H2 production to an industrial-level related activity can be achieved. This review summarizes recent advances in water electrolysis such as the proton exchange membrane water electrolyzer (PEMWE) and anion exchange membrane water electrolyzer (AEMWE). The critical challenges for PEMWE and AEMWE are the high cost of noble-metal catalysts and their durability, respectively. This review highlights the anode and cathode designs for improving the catalytic performance of electrocatalysts, the electrolyte and membrane engineering for membrane electrode assembly (MEA) optimizations, and stack systems for the most promising electrolyzers in water electrolysis. Besides, the advantages of integrating water electrolyzers, fuel cells (FC), and regenerative fuel cells (RFC) into the hydrogen ecosystem are introduced. Finally, the perspective of electrolyzer designs with superior performance is presented.

6.
Discov Nano ; 19(1): 151, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289310

RESUMEN

With the size of the aging population increasing worldwide, the effective diagnosis and treatment of neurodegenerative diseases (NDDs) has become more important. Two-dimensional (2D) materials offer specific advantages for the diagnosis and treatment of NDDs due to their high sensitivity, selectivity, stability, and biocompatibility, as well as their excellent physical and chemical characteristics. As such, 2D materials offer a promising avenue for the development of highly sensitive, selective, and biocompatible theragnostics. This review provides an interdisciplinary overview of advanced 2D materials and their use in biosensors, drug delivery, and tissue engineering/regenerative medicine for the diagnosis and/or treatment of NDDs. The development of 2D material-based biosensors has enabled the early detection and monitoring of NDDs via the precise detection of biomarkers or biological changes, while 2D material-based drug delivery systems offer the targeted and controlled release of therapeutics to the brain, crossing the blood-brain barrier and enhancing treatment effectiveness. In addition, when used in tissue engineering and regenerative medicine, 2D materials facilitate cell growth, differentiation, and tissue regeneration to restore neuronal functions and repair damaged neural networks. Overall, 2D materials show great promise for use in the advanced treatment of NDDs, thus improving the quality of life for patients in an aging population.

7.
Vet Med (Praha) ; 69(8): 261-272, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39296629

RESUMEN

The most common orthopaedic developmental disease in dogs is hip dysplasia. This condition results in coxofemoral laxity due to incongruity and lack of stabilisation of the joint by the soft tissues. Currently, there is no therapeutic plan to correct hip dysplasia without surgical intervention at a very early age. The goal of the non-surgical treatment is to relieve pain and stiffness and to increase the muscle strength, usually through hydrotherapy and the beneficial physical properties of water. Recently, there has been growing interest in regenerative medicine, which involves the use of mesenchymal stem cells (MSCs) and their products to alleviate the characteristic clinical symptoms of osteoarthritis (OA). In vivo studies with canine MSCs have shown that an intra-articular injection of MSCs into cartilage lesions leads to the excellent regeneration of the hyaline cartilage. Regenerative medicine has undergone rapid development in recent years thanks to new therapies based on the application and combination of innovative biomaterials. One of the first known regenerative methods to be used in clinical practice was platelet-rich plasma (PRP). This review summarises the use and potential of MSCs and PRP, including their in vitro properties, their therapeutic effects in the treatment of cartilage lesions in preclinical in vivo studies, their clinical efficacy in the treatment of naturally occurring OA in dogs, and the current limitations of the studies.

8.
Cells ; 13(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273043

RESUMEN

A complete understanding of neural crest cell mechanodynamics during ocular development will provide insight into postnatal neural crest cell contributions to ophthalmic abnormalities in adult tissues and inform regenerative strategies toward injury repair. Herein, single-cell RNA sequencing in zebrafish during early eye development revealed keratin intermediate filament genes krt8 and krt18a.1 as additional factors expressed during anterior segment development. In situ hybridization and immunofluorescence microscopy confirmed krt8 and krt18a.1 expression in the early neural plate border and migrating cranial neural crest cells. Morpholino oligonucleotide (MO)-mediated knockdown of K8 and K18a.1 markedly disrupted the migration of neural crest cell subpopulations and decreased neural crest cell marker gene expression in the craniofacial region and eye at 48 h postfertilization (hpf), resulting in severe phenotypic defects reminiscent of neurocristopathies. Interestingly, the expression of K18a.1, but not K8, is regulated by retinoic acid (RA) during early-stage development. Further, both keratin proteins were detected during postnatal corneal regeneration in adult zebrafish. Altogether, we demonstrated that both K8 and K18a.1 contribute to the early development and postnatal repair of neural crest cell-derived ocular tissues.


Asunto(s)
Córnea , Queratina-8 , Cresta Neural , Regeneración , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Cresta Neural/metabolismo , Cresta Neural/citología , Queratina-8/metabolismo , Queratina-8/genética , Córnea/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Queratina-18/metabolismo , Queratina-18/genética , Tretinoina/farmacología , Tretinoina/metabolismo , Movimiento Celular/genética
9.
BMC Oral Health ; 24(1): 1087, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277754

RESUMEN

BACKGROUND: Different materials have been used as wound dressings after vital pulp therapies. Some of them have limitations such as delayed setting, difficult administration, slight degree of cytotoxicity, crown discoloration and high cost. Therefore, to overcome these disadvantages, composite scaffolds have been used in regenerative dentistry. This study aims to construct and characterize the physicochemical behavior of a novel injectable alginate hydrogel loaded with different bioactive glass nanoparticles in various concentrations as a regenerative pulpotomy filling material. METHODS: Alginate hydrogels were prepared by dissolving alginate powder in alcoholic distilled water containing mesoporous bioactive glass nanoparticles (MBG NPs) or boron-doped MBG NPs (BMBG NPs) at 10 and 20 wt% concentrations. The mixture was stirred and incubated overnight in a water bath at 50 0 C to ensure complete solubility. A sterile dual-syringe system was used to mix the alginate solution with 20 wt% calcium chloride solution, forming the hydrogel upon extrusion. Then, constructed hydrogel specimens from all groups were characterized by FTIR, SEM, water uptake percentage (WA%), bioactivity and ion release, and cytotoxicity. Statistical analysis was done using One-Way ANOVA test for comparisons between groups, followed by multiple pairwise comparisons using Bonferroni adjusted significance level (p < 0.05). RESULTS: Alginate/BMBG loaded groups exhibited remarkable increase in porosity and pore size diameter [IIB1 (168), IIB2 (183) (µm)]. Similarly, WA% increased (~ 800%) which was statistically significant (p < 0.05). Alginate/BMBG loaded groups exhibited the strongest bioactive capability displaying prominent clusters of hydroxyapatite precipitates on hydrogel surfaces. Ca/P ratio of precipitates in IIA2 and IIB1 (1.6) were like Ca/P ratio for stoichiometric pure hydroxyapatite (1.67). MTT assay data revealed that the cell viability % of human gingival fibroblast cells have declined with increasing the concentration of both powders and hydrogel extracts in all groups after 24 and 48 h but still higher than the accepted cell viability % of (˃70%). CONCLUSIONS: The outstanding laboratory performance of the injectable alginate/BMBGNPs (20 wt%) composite hydrogel suggested it as promising candidate for pulpotomy filling material potentially enhancing dentin regeneration in clinical applications.


Asunto(s)
Alginatos , Materiales Biocompatibles , Boro , Dentina , Hidrogeles , Nanopartículas , Alginatos/química , Humanos , Boro/química , Materiales Biocompatibles/química , Dentina/efectos de los fármacos , Porosidad , Supervivencia Celular/efectos de los fármacos , Regeneración/efectos de los fármacos , Ensayo de Materiales , Espectroscopía Infrarroja por Transformada de Fourier , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Microscopía Electrónica de Rastreo , Endodoncia Regenerativa/métodos , Vidrio/química , Fibroblastos/efectos de los fármacos , Cerámica/química , Agua/química
10.
J Biomed Mater Res A ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39295278

RESUMEN

The increasing importance of regenerative medicine has resulted in a growing need for advanced tissue replacement materials in head and neck surgery. Allo- and xenogenic graft processing is often time-consuming and can deteriorate the extracellular matrix (ECM). High hydrostatic pressure (HHP)-treatment could allow specific devitalization while retaining the essential properties of the ECM. Porcine connective tissue and cartilage were HHP-treated at 100-400 MPa for 10 min. Structural modifications following HHP-exposure were examined using electron microscopy, while devitalization was assessed through metabolism and cell death analyses. Furthermore, ECM alterations and decellularization were evaluated by histology, biomechanical testing, and DNA content analysis. Additionally, the inflammatory potential of HHP-treated tissue was evaluated in vivo using a dorsal skinfold chamber in a mouse model. The devitalization effects of HHP were dose-dependent, with a threshold identified at 200 MPa for fibroblasts and chondrocytes. At this pressure level, HHP induced structural alterations in cells, with a shift toward late-stage apoptosis. HHP-treatment preserved ECM structure and biomechanical properties, but did not remove cell debris from the tissue. This study observed a pressure-dependent increase of markers suggesting the occurrence of immunogenic cell death. In vivo investigations revealed an absence of inflammatory responses to HHP-treated tissue, indicating a favorable biological response to HHP. In conclusion, application of HHP devitalizes fibroblasts and chondrocytes at 200 MPa while retaining the essential properties of the ECM. Prospectively, HHP may simplify the preparation of allo- and xenogenic tissue replacement materials and increase the availability of grafts in head and neck surgery.

11.
Cell J ; 26(7): 446-453, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39290122

RESUMEN

OBJECTIVE: Kienböck disease is a rare condition characterized by severe pain and restricted wrist movement. Various palliative methods have been proposed as therapeutic strategies for alleviating symptoms. Mesenchymal stromal cell transplantation has been suggested as an innovative and promising approach due to its potential for inducing regeneration and immunomodulation in the necrotic tissue. This study aims to evaluate the safety of autologous bone marrow derived mesenchymal stromal cells (BM-MSCs) transplantation after core decompression in Kienböck disease. MATERIALS AND METHODS: In this phase I of an open-label clinical trial, three patients (one female and two males) with stage 2 Kienböck disease underwent autologous BM-MSCs transplantation following lunate core decompression. The patients were followed up for six months to assess safety as well as secondary clinical outcomes, including pain level, range of motion (ROM), and functional disability. RESULTS: Safety of BM-MSCs injection following the core decompression was evaluated by recording post-treatment complications during the six-month follow-up. No adverse events (AEs) or severe AEs (SAEs) were reported, indicating that BM-MSCs injection after core decompression is a safe intervention. All patients showed a remarkable reduction in visual analog scale (VAS) scores and "Disabilities of the Arm, Shoulder, and Hand" (DASH) questionnaire scores, suggesting the therapeutic potential of this intervention. Moreover, an increase in the ROM indicated that BM-MSCs transplantation can improve wrist functionality. Additionally, radiographic assessments before and after cell infusion demonstrated a reduction in lunate sclerosis after six months of follow-up. CONCLUSION: The transplantation of autologous BM-MSCs following lunate core decompression seems to be a safe clinical intervention and may lead to pain relief in patients with Kienböck disease. Furthermore, this procedure may help prevent disease progression during the follow-up period (registration number: NCT02646007).

12.
Sci Rep ; 14(1): 21545, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39278961

RESUMEN

Chronic kidney disease poses a significant threat to public health. Renal replacement therapy is the primary treatment option for end-stage kidney disease. However, there is a promising and relatively new method in regenerative medicine for creating a functional organ known as whole kidney decellularization. This method uses the intrinsic vasculature to perfuse the decellularizing agent into the tissue, effectively penetrating and removing cellular material. The regenerated bioscaffolds could serve as a source of organ donation. This study is focused on evaluating the effectiveness of various SDS exposures in decellularizing human fetal kidneys. The study included human fetal kidneys harvested from fetuses terminated before 14 weeks of gestational age. Kidneys were divided into six treatment groups based on SDS concentration and duration of perfusion. Decellularization, scanning electron microscopy, histopathological staining, immunofluorescent staining, and immunohistochemistry staining were performed to evaluate the adequacy of the process. The statistical analysis revealed that the SDS 0.1% treatment group had the highest collagen deposition after 24 h, significantly greater than the SDS 0.5% treatment group at 24 and 48 h. No significant differences were observed among the other treatment groups. The study concludes that the SDS 0.1% treatment group for 24 h was the most effective in terms of ECM content preservation and effective cell removal. This treatment showed better results than the other treatment groups and can be considered for future whole kidney decellularization studies.


Asunto(s)
Feto , Riñón , Dodecil Sulfato de Sodio , Ingeniería de Tejidos , Humanos , Riñón/citología , Riñón/embriología , Feto/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Matriz Extracelular Descelularizada
13.
Front Cell Dev Biol ; 12: 1459891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39291264

RESUMEN

Bone diseases such as osteoporosis and osteoarthritis have become important human health problems, requiring a deeper understanding of the pathogenesis of related diseases and the development of more effective treatments. Bone organoids are three-dimensional tissue masses that are useful for drug screening, regenerative medicine, and disease modeling because they may mimic the structure and physiological activities of organs. Here, we describe various potential methods for culturing bone-related organoids from different stem cells, detailing the construction processes and highlighting the main applications of these bone organoid models. The application of bone organoids in different skeletal diseases is highlighted, and current and promising bone organoids for drug screening and regenerative medicine as well as the latest technological advancements in bone organoids are discussed, while the future development of bone organoids is discussed. Looking forward, it will provide a reference for constructing bone organoids with more complete structures and functions and applying them to biomedical research.

14.
Ultrasound Med Biol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39289118

RESUMEN

Acoustic manipulation or perturbation of biological soft matter has emerged as a promising clinical treatment for a number of applications within regenerative medicine, ranging from bone fracture repair to neuromodulation. The potential of ultrasound (US) endures in imparting mechanical stimuli that are able to trigger a cascade of molecular signals within unscathed cells. Particularly, low-intensity pulsed ultrasound (LIPUS) has been associated with bio-effects such as activation of specific cellular pathways and alteration of cell morphology and gene expression, the extent of which can be modulated by fine tuning of LIPUS parameters including intensity, frequency and exposure time. Although the molecular mechanisms underlying LIPUS are not yet fully elucidated, a number of studies clearly define the modulation of specific ultrasonic parameters as a means to guide the differentiation of a specific set of stem cells towards adult and fully differentiated cell types. Herein, we outline the applications of LIPUS in regenerative medicine and the in vivo and in vitro studies that have confirmed the unbounded clinical potential of this platform. We highlight the latest developments aimed at investigating the physical and biological mechanisms of action of LIPUS, outlining the most recent efforts in using this technology to aid tissue engineering strategies for repairing tissue or modelling specific diseases. Ultimately, we detail tissue-specific applications harnessing LIPUS stimuli, offering insights over the engineering of new constructs and therapeutic modalities. Overall, we aim to lay the foundation for a deeper understanding of the mechanisms governing LIPUS-based therapy, to inform the development of safer and more effective tissue regeneration strategies in the field of regenerative medicine.

15.
Odontology ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277551

RESUMEN

Regeneration of dentin and preserving pulp vitality are essential targets for vital pulp therapy. Our study aimed to evaluate a novel biomimetic pulp capping agent with increased dentin regenerative activities. To produce demineralised dentin matrix (DDM) particles, human extracted teeth were ground and treated with ethylene diamine tetra-acetic acid solution. DDM particles were added to sodium alginate and this combination was dripped into a 5% calcium chloride to obtain DDM hydrogel (DDMH). The eluants of both DDMH and mineral trioxide aggregate (MTA) were tested using an MTT assay to detect their cytotoxic effect on dental pulp stem cells (DPSC). Collagen-I (COL-I) gene expression was analysed on DPSC exposed to different dilutions of pulp capping material eluants by real-time quantitative polymerase chain reaction. Acridine orange staining was used to monitor the cell growth over the tested materials. Agar diffusion assay was utilised to test the antibacterial effect of DDMH and MTA compared to controls. MTT assay revealed that neat eluates of DDMH promoted DPSC viability. However, neat eluates of MTA were cytotoxic on DPSC after 72 h of culture. Moreover, DPSC were capable of growth and attached to the surface of DDMH, while they showed a marked reduction in their number when cultured on the MTA surface for one week, as shown by the acridine orange stain. In DPSC cultured with DDMH eluates, the COL-I gene was overexpressed compared to those cultured with MTA eluants. DDMH had significant antimicrobial activity in comparison to MTA after 24 h incubation. This in vitro study showed that DDMH could be an alternative pulp capping agent for regenerative endodontics.

16.
Cureus ; 16(8): e66872, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39280453

RESUMEN

Dr. Scheffer Chuei-Goong Tseng is widely recognized as a pioneer in the development and application of cryopreserved amniotic membrane therapy. Dr. Tseng has completely revolutionized the management of ocular and various diseases through the success in the study of regenerative medicine, specifically through the human amniotic membrane. He has turned innovative scientific discoveries into products that contribute to many medical fields, including ophthalmology, orthopedics, oral and maxillofacial surgery, dermatology, and wound care. This review article explores Dr. Tseng's background, career, and significant contributions to regenerative medicine, with a particular focus on the impact of cryopreserved amniotic membrane technology.

17.
Front Cell Neurosci ; 18: 1428652, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280795

RESUMEN

This review delves into the generation and therapeutic applications of mesenchymal stem cell-derived neural progenitors (MSC-NPs) in Multiple Sclerosis (MS), a chronic autoimmune disease characterized by demyelination, neuroinflammation, and progressive neurological dysfunction. Most current treatment paradigms primarily aimed at regulating the immune response show little success against the neurodegenerative aspect of MS. This calls for new therapies that would play a role in neurodegeneration and functional recovery of the central nervous system (CNS). While utilizing MSC was found to be a promising approach in MS therapy, the initiation of MSC-NPs therapy is an innovation that introduces a new perspective, a dual-action plan, that targets both the immune and neurodegenerative mechanisms of MS. The first preclinical studies using animal models of the disease showed that MSC-NPs could migrate to damaged sites, support remyelination, and possess immunomodulatory properties, thus, providing a solid basis for their human application. Based on pilot feasibility studies and phase I clinical trials, this review covers the transition from preclinical to clinical phases, where intrathecally administered autologous MSC-NPs has shown great hope in treating patients with progressive MS by providing safety, tolerability, and preliminary efficacy. This review, after addressing the role of MSCs in MS and its animal model of experimental autoimmune encephalomyelitis (EAE), highlights the significance of the MSC-NP therapy by organizing its advancement processes from experimental models to clinical translation in MS treatment. It points out the continuing obstacles, which require more studies to improve therapeutic protocols, uncovers the mechanisms of action, and establishes long-term efficacy and safety in larger controlled trials.

18.
Regen Ther ; 26: 635-645, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39281106

RESUMEN

Hydrogels are biomolecules made of artificial and natural polymers. Their quasi-three-dimensional structure has created unique features. They are very hydrophilic, and in addition to the high inflation rate, they also have excellent water maintenance capacity, biodegradability, biocompatibility, and strong mechanical properties. These properties are used in many tissue engineering applications. All these features have made these scaffolds widely used as attractive structures in the world of tissue engineering and regeneration medicine. In addition to research, scaffolds entered the field of medicine and are expected to play a significant role in the repair of many tissues in the future. This study aims to review the various polymers involved in hydrogel fabrication and their application in the repair of diverse tissues and clinical trials.

19.
Heliyon ; 10(17): e36707, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281506

RESUMEN

Diabetic foot ulcer (DFU), one of the most significant complications of diabetes, is a condition that causes anatomical and functional alterations of the foot resulting in an important social and economic impact, related to disability and health care costs. Recently, three-dimensional bioprinting - which allows the fabrication of complex and biocompatible structures - has been identified as a promising approach in the field of regenerative medicine to promote the healing of chronic wounds, such as DFU. In this concise review we highlight the most relevant and recent attempts of using 3D bioprinted constructs in vivo - both on animals and people - in order to treat non-healing diabetic ulcers and prevent their worsening. Finally, we briefly focus on the future implications of bioprinting, suggesting its forthcoming importance not only for DFU treatment but also for other areas of clinical care.

20.
J Pain Res ; 17: 2951-3001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39282657

RESUMEN

Purpose: Injectable biologics have not only been described and developed to treat dermal wounds, cardiovascular disease, and cancer, but have also been reported to treat chronic pain conditions. Despite emerging evidence supporting regenerative medicine therapy for pain, many aspects remain controversial. Methods: The American Society of Pain and Neuroscience (ASPN) identified the educational need for an evidence-based guideline on regenerative medicine therapy for chronic pain. The executive board nominated experts spanning multiple specialties including anesthesiology, physical medicine and rehabilitation, and sports medicine based on expertise, publications, research, and clinical practice. A steering committee selected preliminary questions, which were reviewed and refined. Evidence was appraised using the United States Preventive Services Task Force (USPSTF) criteria for evidence level and degree of recommendation. Using a modified Delphi approach, consensus points were distributed to all collaborators and each collaborator voted on each point. If collaborators provided a decision of "disagree" or "abstain", they were invited to provide a rationale in a non-blinded fashion to the committee chair, who incorporated the respective comments and distributed revised versions to the committee until consensus was achieved. Results: Sixteen questions were selected for guideline development. Questions that were addressed included type of injectable biologics and mechanism, evidence in treating chronic pain indications (eg, tendinopathy, muscular pathology, osteoarthritis, intervertebral disc disease, neuropathic pain), role in surgical augmentation, dosing, comparative efficacy between injectable biologics, peri-procedural practices to optimize therapeutic response and quality of injectate, federal regulations, and complications with mitigating strategies. Conclusion: In well-selected individuals with certain chronic pain indications, use of injectable biologics may provide superior analgesia, functionality, and/or quality of life compared to conventional medical management or placebo. Future high-quality randomized clinical trials are warranted with implementation of minimum reporting standards, standardization of preparation protocols, investigation of dose-response associations, and comparative analysis between different injectable biologics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA