Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Biomech ; 176: 112306, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39250866

RESUMEN

Guidewire-based pressure measurement is essential for diagnosing coronary artery disease. However, the impact of the guidewire on local hemodynamics and diagnostic outcomes is not fully understood. In this study, we propose a generalized reduced-order model (ROM) to accurately predict the trans-stenotic pressure drop in arteries. A key advantage of this model is that the viscous term does not rely on empirical parameters, making it applicable to both scenarios with and without guidewire insertion, and across varying stenosis severities. The proposed model demonstrates good accuracy compared to 3D idealized numerical models, achieving an average prediction error of 3.61% for cases without a guidewire and 4.53% for cases with a guidewire. Furthermore, when applied to a patient-specific model, it achieves comparable or better results than previously published ROMs. Finally, this ROM is employed to investigate the shifting relative importance of different components of the trans-stenotic pressure drop at various stenosis severities, and to provide further insights into the guidewire's influence on FFR measurements.

2.
Med Eng Phys ; 131: 104229, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39284655

RESUMEN

INTRODUCTION: The pre-operative planning and intra-operative navigation of the endovascular aneurysm repair (EVAR) procedure are currently challenged by the aortic deformations that occur due to the insertion of a stiff guidewire. Hence, a fast and accurate predictive tool may help clinicians in the decision-making process and during surgical navigation, potentially reducing the radiations and contrast dose. To this aim, we generated a reduced order model (ROM) trained on parametric finite element simulations of the aortic wall-guidewire interaction. METHOD: A Design of Experiments (DOE) consisting of 300 scenarios was created spanning over seven parameters. Radial basis functions were used to achieve a morphological parametrization of the aortic geometry. The ROM was built using 200 scenarios for training and the remaining 100 for validation. RESULTS: The developed ROM estimated the displacement of aortic nodes with a relative error below 5.5% for all the considered validation cases. From a preliminary analysis, the aortic elasticity, the stiffness of the guidewire and the tortuosity of the cannulated iliac artery proved to be the most influential parameters. CONCLUSIONS: Once built, the ROM provided almost real-time and accurate estimations of the guidewire-induced aortic displacement field, thus potentially being a promising pre- and intra-operative tool for clinicians.


Asunto(s)
Procedimientos Endovasculares , Análisis de Elementos Finitos , Cirugía Asistida por Computador , Procedimientos Endovasculares/instrumentación , Cirugía Asistida por Computador/métodos , Humanos , Aorta/cirugía , Periodo Intraoperatorio
3.
Heliyon ; 10(15): e34928, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170143

RESUMEN

Model Order Reduction (MOR) techniques have extensive applications across scientific and engineering disciplines, such as neutron field reconstruction of nuclear reactor cores, thermoelastic field reconstruction, fluid, and solid mechanics. In the process of building a Reduced Order Model (ROM), the selection of the basis functions in the offline stage is crucial and directly depends on the parameter space sampling strategy. This problem has always been a challenge in MOR. Research into adaptive sampling algorithms has become a hot topic in recent years. To better understand the application of these algorithms to MOR, this paper focuses on three prevalent adaptive sampling algorithms: pseudo-gradient sampling, adaptive sparse grid sampling, adaptive training set extension. These have been successfully applied in various applications, including nuclear reactor cores, molten salt reactor system, power system for convection problems. We systematically assess and compare their performance, finding that adaptive sampling algorithms excel in sampling divergent and oscillating areas and are generally better than the standard sampling strategy. Specifically, the pseudo-gradient sampling algorithm is effective for small-scale scenarios, while the other two algorithms are designed for large-scale sampling. Their practicality is confirmed through successful applications in nuclear reactor cores.

4.
ISA Trans ; : 1-8, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39147610

RESUMEN

This paper proposes a model-based optimization method for the production of automotive seals in an extrusion process. The high production throughput, coupled with quality constraints and the inherent uncertainty of the process, encourages the search for operating conditions that minimize nonconformities. The main uncertainties arise from the process variability and from the raw material itself. The proposed method, which is based on Bayesian optimization, takes these factors into account and obtains a robust set of process parameters. Due to the high computational cost and complexity of performing detailed simulations, a reduced order model is used to address the optimization. The proposal has been evaluated in a virtual environment, where it has been verified that it is able to minimize the impact of process uncertainties. In particular, it would significantly improve the quality of the product without incurring additional costs, achieving a 50% tighter dimensional tolerance compared to a solution obtained by a deterministic optimization algorithm.

5.
Biomech Model Mechanobiol ; 23(4): 1411-1429, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38753292

RESUMEN

A data-driven reduced order model (ROM) based on a proper orthogonal decomposition-radial basis function (POD-RBF) approach is adopted in this paper for the analysis of blood flow dynamics in a patient-specific case of atrial fibrillation (AF). The full order model (FOM) is represented by incompressible Navier-Stokes equations, discretized with a finite volume (FV) approach. Both the Newtonian and the Casson's constitutive laws are employed. The aim is to build a computational tool able to efficiently and accurately reconstruct the patterns of relevant hemodynamics indices related to the stasis of the blood in a physical parametrization framework including the cardiac output in the Newtonian case and also the plasma viscosity and the hematocrit in the non-Newtonian one. Many FOM-ROM comparisons are shown to analyze the performance of our approach as regards errors and computational speed-up.


Asunto(s)
Fibrilación Atrial , Atrios Cardíacos , Modelos Cardiovasculares , Fibrilación Atrial/fisiopatología , Humanos , Atrios Cardíacos/fisiopatología , Hemodinámica , Simulación por Computador , Velocidad del Flujo Sanguíneo
6.
Stapp Car Crash J ; 67: 1-13, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513070

RESUMEN

Predicting airbag deployment geometries is an important task for airbag and vehicle designers to meet safety standards based on biomechanical injury risk functions. This prediction is also an extraordinarily complex problem given the number of disciplines and their interactions. State-of-the-art airbag deployment geometry simulations (including time history) entail large, computationally expensive numerical methods such as finite element analysis (FEA) and computational fluid dynamics (CFD), among others. This complexity results in exceptionally large simulation times, making thorough exploration of the design space prohibitive. This paper proposes new parametric simulation models which drastically accelerate airbag deployment geometry predictions while maintaining the accuracy of the airbag deployment geometry at reasonable levels; these models, called herein machine learning (ML)-accelerated models, blend physical system modes with data-driven techniques to accomplish fast predictions within a design space defined by airbag and impactor parameters. These ML-accelerated models are evaluated with virtual test cases of increasing complexity: from airbag deployments against a locked deformable obstacle to airbag deployments against free rigid obstacles; the dimension of the tested design spaces is up to six variables. ML training times are documented for completeness; thus, airbag design explorers or optimization engineers can assess the full budget for ML-accelerated approaches including training. In these test cases, the ML-accelerated simulation models run three orders of magnitude faster than the high-fidelity multi-physics methods, while accuracies are kept within reasonable levels within the design space.


Asunto(s)
Airbags , Simulación por Computador , Aprendizaje Automático , Humanos , Diseño de Equipo , Accidentes de Tránsito , Análisis de Elementos Finitos , Modelos Teóricos
7.
Cardiovasc Eng Technol ; 15(3): 333-345, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38381368

RESUMEN

PURPOSE: Aortic dissection is associated with a high mortality rate. Although computational approaches have shed light on many aspects of the disease, a sensitivity analysis is required to determine the significance of different factors. Because of its complex geometry and high computational expense, the three-dimensional (3D) fluid-structure interaction (FSI) simulation is not a suitable approach for sensitivity analysis. METHODS: We performed a Monte Carlo simulation (MCS) to investigate the sensitivity of hemodynamic quantities to the lumped parameters of our zero-dimensional (0D) model with numerically calculated lumped parameters. We performed local and global analyses on the effect of the model parameters on important hemodynamic quantities. RESULTS: The MCS showed that a larger lumped resistance value for the false lumen and the tears result in a higher retrograde flow rate in the false lumen (the coefficient of variation, c v , i = 0.0183 , the sensitivity S X i σ = 0.54 , Spearman's coefficient, ρ s = 0.464 ). For the intraluminal pressure, our results show a significant role in the resistance and inertance of the true lumen (the coefficient of variation, c v , i = 0.0640 , the sensitivity S X i σ = 0.85 , and Spearman's coefficient, ρ s = 0.855 for the inertance of the true lumen). CONCLUSION: This study highlights the necessity of comparing the results of the local and global sensitivity analyses to understand the significance of multiple lumped parameters. Because of the efficiency of the method, our approach is potentially useful to investigate and analyze medical planning.


Asunto(s)
Disección Aórtica , Simulación por Computador , Hemodinámica , Modelos Cardiovasculares , Método de Montecarlo , Disección Aórtica/fisiopatología , Humanos , Aneurisma de la Aorta/fisiopatología , Aneurisma de la Aorta/diagnóstico por imagen , Análisis Numérico Asistido por Computador
8.
Biomech Model Mechanobiol ; 23(3): 987-1012, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38416219

RESUMEN

Recently, 3D-printed biodegradable scaffolds have shown great potential for bone repair in critical-size fractures. The differentiation of the cells on a scaffold is impacted among other factors by the surface deformation of the scaffold due to mechanical loading and the wall shear stresses imposed by the interstitial fluid flow. These factors are in turn significantly affected by the material properties, the geometry of the scaffold, as well as the loading and flow conditions. In this work, a numerical framework is proposed to study the influence of these factors on the expected osteochondral cell differentiation. The considered scaffold is rectangular with a 0/90 lay-down pattern and a four-layered strut made of polylactic acid with a 5% steel particle content. The distribution of the different types of cells on the scaffold surface is estimated through a scalar stimulus, calculated by using a mechanobioregulatory model. To reduce the simulation time for the computation of the stimulus, a probabilistic machine learning (ML)-based reduced-order model (ROM) is proposed. Then, a sensitivity analysis is performed using the Shapley additive explanations to examine the contribution of the various parameters to the framework stimulus predictions. In a final step, a multiobjective optimization procedure is implemented using genetic algorithms and the ROM, aiming to identify the material parameters and loading conditions that maximize the percentage of surface area populated by bone cells while minimizing the area corresponding to the other types of cells and the resorption condition. The results of the performed analysis highlight the potential of using ROMs for the scaffold design, by dramatically reducing the simulation time while enabling the efficient implementation of sensitivity analysis and optimization procedures.


Asunto(s)
Huesos , Aprendizaje Automático , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Huesos/fisiología , Probabilidad , Estrés Mecánico , Humanos , Simulación por Computador , Poliésteres
9.
Artif Intell Med ; 147: 102744, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184351

RESUMEN

BACKGROUND AND OBJECTIVE: Recently, computational fluid dynamics enables the non-invasive calculation of fractional flow reserve (FFR) based on 3D coronary model, but it is time-consuming. Currently, machine learning technique has emerged as an efficient and reliable approach for prediction, which allows saving a lot of analysis time. This study aimed at developing a simplified FFR prediction model for rapid and accurate assessment of functional significance of stenosis. METHODS: A reduced-order lumped parameter model (LPM) of coronary system and cardiovascular system was constructed for rapidly simulating coronary flow, in which a machine learning model was embedded for accurately predicting stenosis flow resistance at a given flow from anatomical features of stenosis. Importantly, the LPM was personalized in both structures and parameters according to coronary geometries from computed tomography angiography and physiological measurements such as blood pressure and cardiac output for personalized simulations of coronary pressure and flow. Coronary lesions with invasive FFR ≤ 0.80 were defined as hemodynamically significant. RESULTS: A total of 91 patients (93 lesions) who underwent invasive FFR were involved in FFR derived from machine learning (FFRML) calculation. Of the 93 lesions, 27 lesions (29.0%) showed lesion-specific ischemia. The average time of FFRML simulation was about 10 min. On a per-vessel basis, the FFRML and FFR were significantly correlated (r = 0.86, p < 0.001). The diagnostic accuracy, sensitivity, specificity, positive predictive value and negative predictive value were 91.4%, 92.6%, 90.9%, 80.6% and 96.8%, respectively. The area under the receiver-operating characteristic curve of FFRML was 0.984. CONCLUSION: In this selected cohort of patients, the FFRML improves the computational efficiency and ensures the accuracy. The favorable performance of FFRML approach greatly facilitates its potential application in detecting hemodynamically significant coronary stenosis in future routine clinical practice.


Asunto(s)
Reserva del Flujo Fraccional Miocárdico , Humanos , Constricción Patológica , Presión Sanguínea , Angiografía por Tomografía Computarizada , Aprendizaje Automático
10.
Bioengineering (Basel) ; 11(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38247961

RESUMEN

Real-time stress distribution data for implants and cortical bones can aid in determining appropriate implant placement plans and improving the post-placement success rate. This study aims to achieve these goals via a parametric reduced-order model (ROM) method based on stress distribution data obtained using finite element analysis. For the first time, the finite element analysis cases for six design variables related to implant placement were determined simultaneously via the design of experiments and a sensitivity analysis. The differences between the minimum and maximum stresses obtained for the six design variables confirm that the order of their influence is: Young's modulus of the cancellous bone > implant thickness > front-rear angle > left-right angle > implant length. Subsequently, a one-dimensional (1-D) CAE solver was created using the ROM with the highest coefficient of determination and prognosis accuracy. The proposed 1-D CAE solver was loaded into the Ondemand3D program and used to implement a digital twin that can aid with dentists' decision making by combining various tooth image data to evaluate and visualize the adequacy of the placement plan in real time. Because the proposed ROM method does not rely entirely on the doctor's judgment, it ensures objectivity.

11.
Artículo en Inglés | MEDLINE | ID: mdl-36625712

RESUMEN

This work investigates linear and non-linear parametric reduced order models (ROM) capable of replacing computationally expensive high-fidelity simulations of human body models (HBM) through a non-intrusive approach. Conventional crash simulation methods pose a computational barrier that restricts profound analyses such as uncertainty quantification, sensitivity analysis, or optimization studies. The non-intrusive framework couples dimensionality reduction techniques with machine learning-based surrogate models that yield a fast responding data-driven black-box model. A comparative study is made between linear and non-linear dimensionality reduction techniques. Both techniques report speed-ups of a few orders of magnitude with an accurate generalization of the design space. These accelerations make ROMs a valuable tool for engineers.


Asunto(s)
Cuerpo Humano , Aprendizaje Automático , Humanos , Incertidumbre
12.
Comput Methods Programs Biomed ; 244: 107982, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134647

RESUMEN

BACKGROUND AND OBJECTIVE: Acute Ischaemic Stroke (AIS), a significant global health concern, results from occlusions in cerebral arteries, causing irreversible brain damage. Different type of treatments exist depending on the size and location of the occlusion. Challenges persist in achieving faster diagnosis and treatment, which needs to happen in the first hours after the onset of symptoms to maximize the chances of patient recovery. The current diagnostic pipeline, i.e. "drip and ship", involves diagnostic via advanced imaging tools, only available in large clinical facilities, which poses important delays. This study investigates the feasibility of developing a machine learning model to diagnose and locate occluding blood clots from velocity waveforms, which can be easily be obtained with portable devices such as Doppler Ultrasound. The goal is to explore this approach as a cost-effective and time-efficient alternative to advanced imaging techniques typically available only in large hospitals. METHODS: Simulated haemodynamic data is used to conduct blood flow simulations representing healthy and different AIS scenarios using a population-based database. A Machine Learning classification model is trained to solve the inverse problem, this is, detect and locate a potentially occluding thrombus from measured waveforms. The classification process involves two steps. First, the region where the thrombus is located is classified into nine groups, including healthy, left or right large vessel occlusion, left or right anterior cerebral artery, and left or right posterior cerebral artery. In a second step, the bifurcation generation of the thrombus location is classified as small, medium, or large vessel occlusion. RESULTS: The proposed methodology is evaluated for data without noise, achieving a true prediction rate exceeding 95% for both classification steps mentioned above. The inclusion of up to 20% noise reduces the true prediction rate to 80% for region detection and 70% for bifurcation generation detection. CONCLUSIONS: This study demonstrates the potential effectiveness and efficiency of using haemodynamic data and machine learning to detect and locate occluding thrombi in AIS patients. Although the geometric and topological data used in this study are idealized, the results suggest that this approach could be applicable in real-world situations with appropriate adjustments. Source code is available in https://github.com/ahmetsenemse/Acute-Ischaemic-Stroke-screening-tool-.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Trombosis , Comportamiento del Uso de la Herramienta , Humanos , Accidente Cerebrovascular/diagnóstico por imagen , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/terapia , Hemodinámica
13.
Biomimetics (Basel) ; 8(7)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37999164

RESUMEN

FSI simulations of flapping motions have been widely investigated to develop a flapping-wing micro air vehicle. Because an intensive parametric study is important for the product design, a computationally efficient model is required. The purpose of the present study was to develop a reduced-order model of flapping motion. Among the various methods available to solve FSI problems, we employed the Dirichlet-Neumann partitioned iterative method, in which three sub-systems (fluid mesh update, fluid analysis, and structural analysis) are executed. In the proposed analysis system, first, snapshot data of structural displacement, fluid velocity, fluid pressure, and displacement for the fluid mesh update were collected from a high-fidelity FSI analysis. Then, the snapshot data were used to create low-dimensional surrogate systems of the above three sub-systems based on the POD under Galerkin projection (i.e., the POD-Galerkin method). In numerical examples, we considered a two-dimensional FSI problem of simplified flapping motion. The problem was described via two parameters: frequency and amplitude of flapping motion. We demonstrated the effectiveness of the presented reduced-order model in significantly reducing computational time while preserving the desired accuracy.

14.
Heliyon ; 9(11): e20930, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37928036

RESUMEN

The estimation of fluid flows inside a centrifugal pump in realtime is a challenging task that cannot be achieved with long-established methods like CFD due to their computational demands. We use a projection-based reduced order model (ROM) instead. Based on this ROM, a realtime observer can be devised that estimates the temporally and spatially resolved velocity and pressure fields inside the pump. The entire fluid-solid domain is treated as a fluid in order to be able to consider moving rigid bodies in the reduction method. A greedy algorithm is introduced for finding suitable and as few measurement locations as possible. Robust observability is ensured with an extended Kalman filter, which is based on a time-variant observability matrix obtained from the nonlinear velocity ROM. We present the results of the velocity and pressure ROMs based on a unsteady Reynolds-averaged Navier-Stokes CFD simulation of a 2D centrifugal pump, as well as the results for the extended Kalman filter.

15.
Front Robot AI ; 10: 1094114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779576

RESUMEN

Soft robot's natural dynamics calls for the development of tailored modeling techniques for control. However, the high-dimensional configuration space of the geometrically exact modeling approaches for soft robots, i.e., Cosserat rod and Finite Element Methods (FEM), has been identified as a key obstacle in controller design. To address this challenge, Reduced Order Modeling (ROM), i.e., the approximation of the full-order models, and Model Order Reduction (MOR), i.e., reducing the state space dimension of a high fidelity FEM-based model, are enjoying extensive research. Although both techniques serve a similar purpose and their terms have been used interchangeably in the literature, they are different in their assumptions and implementation. This review paper provides the first in-depth survey of ROM and MOR techniques in the continuum and soft robotics landscape to aid Soft Robotics researchers in selecting computationally efficient models for their specific tasks.

16.
J Biomech ; 158: 111759, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37657234

RESUMEN

Data driven, reduced order modelling has shown promise in tackling the challenges associated with computational and experimental haemodynamic models. In this work, we focus on the use of Reduced Order Models (ROMs) to reconstruct velocity fields in a patient-specific dissected aorta, with the objective being to compare the ROMs obtained from Robust Proper Orthogonal Decomposition (RPOD) to those obtained from the traditional Proper Orthogonal Decomposition (POD). POD and RPOD are applied to in vitro, haemodynamic data acquired by Particle Image Velocimetry and compare the decomposed flows to those derived from Computational Fluid Dynamics (CFD) data for the same geometry and flow conditions. In this work, PIV and CFD results act as surrogates for clinical haemodynamic data e.g. MR, helping to demonstrate the potential use of ROMS in real clinical scenarios. The flow is reconstructed using different numbers of POD modes and the flow features obtained throughout the cardiac cycle are compared to the original Full Order Models (FOMs). Robust Principal Component Analysis (RPCA), the first step of RPOD, has been found to enhance the quality of PIV data, allowing POD to capture most of the kinetic energy of the flow in just two modes similar to the numerical data that are free from measurement noise. The reconstruction errors differ along the cardiac cycle with diastolic flows requiring more modes for accurate reconstruction. In general, modes 1-10 are found sufficient to represent the flow field. The results demonstrate that the coherent structures that characterise this aortic dissection flow are described by the first few POD modes suggesting that it is possible to represent the macroscale behaviour of aortic flow in a low-dimensional space; thus significantly simplifying the problem, and allowing for more computationally efficient flow simulations or machine learning based flow predictions that can pave the way for translation of such models to the clinic.


Asunto(s)
Aorta , Disección Aórtica , Humanos , Corazón , Hemodinámica , Hidrodinámica
17.
Physiol Rep ; 11(7): e15628, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37066977

RESUMEN

Wall shear stress (WSS)-a key regulator of endothelial function-is commonly estimated in vivo using simplified mathematical models based on Poiseuille's flow, assuming a quasi-steady parabolic velocity distribution, despite evidence that more rapidly time-varying, pulsatile blood flow during each cardiac cycle modulates flow-mediated dilation (FMD) in large arteries of healthy subjects. More exact and accurate models based on the well-established Womersley solution for rapidly changing blood flow have not been adopted clinically, potentially because the Womersley solution relies on the local pressure gradient, which is difficult to measure non-invasively. We have developed an open-source method for automatic reconstruction of unsteady, Womersley-derived velocity profiles, and WSS in conduit arteries. The proposed method (available online at https://doi.org/10.5281/zenodo.7576408) requires only the time-averaged diameter of the vessel and time-varying velocity data available from non-invasive imaging such as Doppler ultrasound. Validation of the method with subject-specific computational fluid dynamics and application to synthetic velocity waveforms in the common carotid, brachial, and femoral arteries reveals that the Poiseuille solution underestimates peak WSS 38.5%-55.1% during the acceleration and deceleration phases of systole and underestimates or neglects retrograde WSS. Following evidence that oscillatory shear significantly augments vasodilator production, it is plausible that mischaracterization of the shear stimulus by assuming parabolic flow leads to systematic underestimates of important biological effects of time-varying blood velocity in conduit arteries.


Asunto(s)
Arterias Carótidas , Hemodinámica , Humanos , Velocidad del Flujo Sanguíneo/fisiología , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/fisiología , Angiografía , Ultrasonografía , Flujo Pulsátil , Estrés Mecánico , Modelos Cardiovasculares
18.
J Fluid Mech ; 9552023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36936352

RESUMEN

In this paper, we present a generic approach of a dynamical data-driven model order reduction technique for three-dimensional fluid-structure interaction problems. A low-order continuous linear differential system is identified from snapshot solutions of a high-fidelity solver. The reduced order model (ROM) uses different ingredients like proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and Tikhonov-based robust identification techniques. An interpolation method is used to predict the capsule dynamics for any value of the governing non-dimensional parameters that are not in the training database. Then a dynamical system is built from the predicted solution. Numerical evidence shows the ability of the reduced model to predict the time-evolution of the capsule deformation from its initial state, whatever the parameter values. Accuracy and stability properties of the resulting low-order dynamical system are analysed numerically. The numerical experiments show a very good agreement, measured in terms of modified Hausdorff distance between capsule solutions of the full-order and low-order models both in the case of confined and unconfined flows. This work is a first milestone to move towards real time simulation of fluid-structure problems, which can be extended to non-linear low-order systems to account for strong material and flow non-linearities. It is a valuable innovation tool for rapid design and for the development of innovative devices.

19.
Biomech Model Mechanobiol ; 22(3): 905-923, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36752983

RESUMEN

The esophagogastric junction (EGJ) is located at the distal end of the esophagus and acts as a valve allowing swallowed food to enter the stomach and preventing acid reflux. Irregular weakening or stiffening of the EGJ muscles results in changes to its opening and closing patterns which can progress into esophageal disorders. Therefore, understanding the physics of the opening and closing cycle of the EGJ can provide mechanistic insights into its function and can help identify the underlying conditions that cause its dysfunction. Using clinical functional lumen imaging probe (FLIP) data, we plotted the pressure-cross-sectional area loops at the EGJ location and distinguished two major loop types-a pressure dominant loop and a tone dominant loop. In this study, we aimed to identify the key characteristics that define each loop type and determine what causes the inversion from one loop to another. To do so, the clinical observations are reproduced using 1D simulations of flow inside a FLIP device located in the esophagus, and the work done by the EGJ wall over time is calculated. This work is decomposed into active and passive components, which reveal the competing mechanisms that dictate the loop type. These mechanisms are esophageal stiffness, fluid viscosity, and the EGJ relaxation pattern.


Asunto(s)
Unión Esofagogástrica , Reflujo Gastroesofágico , Humanos , Unión Esofagogástrica/fisiología , Manometría/métodos
20.
Int J Pharm ; 635: 122701, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36773730

RESUMEN

In the present study, a reduced-order model is proposed to analyze a novel continuous dryer with an application in the pharmaceutical industry. The model was validated using process data from ibuprofen drying test runs, and the results were in good agreement with the experimental data. The test substance was an ibuprofen paste with an initial LOD of up to 30 w%. The simulations showed that the contact heat transfer coefficient can be correlated with the degree of wetness. Furthermore, a set of simulations was performed to analyze the influence of input parameters on the dryer's performance: i) the inlet air flow rate and ii) the inlet air temperature. The simulation results demonstrated that a variation in the inlet air temperature significantly affects the air temperature profile, while the inlet air flow rate has a minor effect. Besides, it was also established that the inlet solid LoD has the most considerable effect on the product quality (e.g., final solid moisture content). The results showed a deviation of less than 10% for the product LoD and the product temperature in most cases.


Asunto(s)
Calor , Ibuprofeno , Temperatura , Desecación/métodos , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA