Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biosensors (Basel) ; 14(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39194588

RESUMEN

Far-red fluorescent proteins (FPs) have emerged as indispensable tools in in vivo imaging, playing a pivotal role in elucidating fundamental mechanisms and addressing application issues in biotechnology and biomedical fields. Their ability for deep penetration, coupled with reduced light scattering and absorption, robust resistance to autofluorescence, and diminished phototoxicity, has positioned far-red biosensors at the forefront of non-invasive visualization techniques for observing intracellular activities and intercellular behaviors. In this review, far-red FPs and their applications in living systems are mainly discussed. Firstly, various far-red FPs, characterized by emission peaks spanning from 600 nm to 650 nm, are introduced. This is followed by a detailed presentation of the fundamental principles enabling far-red biosensors to detect biomolecules and environmental changes. Furthermore, the review accentuates the superiority of far-red FPs in multi-color imaging. In addition, significant emphasis is placed on the value of far-red FPs in improving imaging resolution, highlighting their great contribution to the advancement of in vivo imaging.


Asunto(s)
Técnicas Biosensibles , Proteínas Luminiscentes , Proteína Fluorescente Roja , Humanos , Animales , Imagen Óptica/métodos
2.
Photochem Photobiol ; 100(4): 897-909, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38752609

RESUMEN

Large Stokes shift red fluorescent proteins (LSS-RFPs) are genetically encoded and exhibit a significant difference of a few hundreds of nanometers between their excitation and emission peak maxima (i.e., the Stokes shift). These LSS-RFPs (absorbing blue light and emitting red light) feature a unique photocycle responsible for their significant Stokes shift. The photocycle associated with this LSS characteristic in certain RFPs is quite perplexing, hinting at the complex nature of excited-state photophysics. This article provides a brief review on the fundamental mechanisms governing the photocycle of various LSS-RFPs, followed by a discussion on experimental results on mKeima emphasizing its relaxation pathways which garnered attention due to its >200 nm Stokes shift. Corroborating steady-state spectroscopy with computational studies, four different forms of chromophore of mKeima contributing to the cis-trans conformers of the neutral and anionic forms were identified in a recent study. Furthering these findings, in this account a detailed discussion on the photocycle of mKeima, which encompasses sequential excited-state isomerization, proton transfer, and subsequent structural reorganization involving three isomers, leading to an intriguing temperature and pH-dependent dual fluorescence, is explored using broadband femtosecond transient absorption spectroscopy.


Asunto(s)
Proteínas Luminiscentes , Proteína Fluorescente Roja , Proteínas Luminiscentes/química , Procesos Fotoquímicos
3.
Chem Asian J ; 18(20): e202300668, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37682793

RESUMEN

Red fluorescent proteins (RFPs) represent an increasingly popular class of genetically encodable bioprobes and biomarkers that can advance next-generation breakthroughs across the imaging and life sciences. Since the rational design of RFPs with improved functions or enhanced versatility requires a mechanistic understanding of their working mechanisms, while fluorescence is intrinsically an ultrafast event, a suitable toolset involving steady-state and time-resolved spectroscopic techniques has become powerful in delineating key structural features and dynamic steps which govern irreversible photoconverting or reversible photoswitching RFPs, and large Stokes shift (LSS)RFPs. The pertinent cis-trans isomerization and protonation state change of RFP chromophores in their local environments, involving key residues in protein matrices, lead to rich and complicated spectral features across multiple timescales. In particular, ultrafast excited-state proton transfer in various LSSRFPs showcases the resolving power of wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in mapping a photocycle with crucial knowledge about the red-emitting species. Moreover, recent progress in noncanonical RFPs with a site-specifically modified chromophore provides an appealing route for efficient engineering of redder and brighter RFPs, highly desirable for bioimaging. Such an effective feedback loop involving physical chemists, protein engineers, and biomedical microscopists will enable future successes to expand fundamental knowledge and improve human health.


Asunto(s)
Protones , Espectrometría Raman , Humanos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Espectrometría Raman/métodos
4.
Angew Chem Int Ed Engl ; 62(5): e202212209, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36440527

RESUMEN

Large Stokes shift (LSS) red fluorescent proteins (RFPs) are highly desirable for bioimaging advances. The RFP mKeima, with coexisting cis- and trans-isomers, holds significance as an archetypal system for LSS emission due to excited-state proton transfer (ESPT), yet the mechanisms remain elusive. We implemented femtosecond stimulated Raman spectroscopy (FSRS) and various time-resolved electronic spectroscopies, aided by quantum calculations, to dissect the cis- and trans-mKeima photocycle from ESPT, isomerization, to ground-state proton transfer in solution. This work manifests the power of FSRS with global analysis to resolve Raman fingerprints of intermediate states. Importantly, the deprotonated trans-isomer governs LSS emission at 620 nm, while the deprotonated cis-isomer's 520 nm emission is weak due to an ultrafast cis-to-trans isomerization. Complementary spectroscopic techniques as a table-top toolset are thus essential to study photochemistry in physiological environments.


Asunto(s)
Protones , Espectrometría Raman , Proteínas Luminiscentes/química , Espectrometría Raman/métodos , Isomerismo , Proteínas Fluorescentes Verdes/química , Proteína Fluorescente Roja
5.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232354

RESUMEN

Red fluorescent proteins with a large Stokes' shift (LSSRFPs) are genetically encoded and efficiently excited by 488 nm light, allowing simultaneous dual-color one- and two-photon fluorescence imaging and fluorescence correlation spectroscopy in combination with green fluorescent proteins FPs. Recently, based on the conventional bright mScarlet RFP, we developed the LSSRFP LSSmScarlet. LSSmScarlet is characterized by two pKa values at pH values of 1.9 and 5.8. In this study, we developed improved versions of LSSmScarlet, named LSSmScarlet2 and LSSmScarlet3, which are characterized by a Stokes' shift of 128 nm and extreme pH stability with a single pKa value of 2.2. LSSmScarlet2 and LSSmScarlet3 had 1.8-fold faster and 3-fold slower maturation than LSSmScarlet, respectively. In addition, both LSSRFPs were 1.5- to 1.6-fold more photostable and more chemically resistant to denaturation by guanidinium chloride and guanidinium thiocyanate. We also compared the susceptibility of the LSSmScarlet2, LSSmScarlet3, and other LSSRFPs to the reagents used for whole-mount imaging, expansion microscopy, and immunostaining techniques. Due to higher pH stability and faster maturation, the LSSmScarlet3-LAMP3 fusion was 2.2-fold brighter than LSSmScarlet-LAMP3 in lysosomes of mammalian cells. The LSSmScarlet3-hLAMP2A fusion was similar in brightness to LSSmScarlet-hLAMP2A in lysosomes. We successfully applied the monomeric LSSmScarlet2 and LSSmScarlet3 proteins for confocal imaging of structural proteins in live mammalian cells. We also solved the X-ray structure of the LSSmScarlet2 protein at a resolution of 1.41 Å. Site-directed mutagenesis of the LSSmScarlet2 protein demonstrated the key role of the T74 residue in improving the pH and chemical stability of the LSSmScarlet2 protein.


Asunto(s)
Mamíferos , Microscopía , Animales , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Guanidina , Proteínas Luminiscentes/metabolismo , Mamíferos/metabolismo , Mutagénesis Sitio-Dirigida , Espectrometría de Fluorescencia
6.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35054953

RESUMEN

Red fluorescent proteins and biosensors built upon them are potentially beneficial for two-photon laser microscopy (TPLM) because they can image deeper layers of tissue, compared to green fluorescent proteins. However, some publications report on their very fast photobleaching, especially upon excitation at 750-800 nm. Here we study the multiphoton bleaching properties of mCherry, mPlum, tdTomato, and jREX-GECO1, measuring power dependences of photobleaching rates K at different excitation wavelengths across the whole two-photon absorption spectrum. Although all these proteins contain the chromophore with the same chemical structure, the mechanisms of their multiphoton bleaching are different. The number of photons required to initiate a photochemical reaction varies, depending on wavelength and power, from 2 (all four proteins) to 3 (jREX-GECO1) to 4 (mCherry, mPlum, tdTomato), and even up to 8 (tdTomato). We found that at sufficiently low excitation power P, the rate K often follows a quadratic power dependence, that turns into higher order dependence (K~Pα with α > 2) when the power surpasses a particular threshold P*. An optimum intensity for TPLM is close to the P*, because it provides the highest signal-to-background ratio and any further reduction of laser intensity would not improve the fluorescence/bleaching rate ratio. Additionally, one should avoid using wavelengths shorter than a particular threshold to avoid fast bleaching due to multiphoton ionization.


Asunto(s)
Rayos Láser , Proteínas Luminiscentes/química , Microscopía de Fluorescencia por Excitación Multifotónica , Fotoblanqueo , Algoritmos , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Modelos Teóricos , Proteína Fluorescente Roja
7.
Int J Mol Sci ; 22(23)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34884694

RESUMEN

Genetically encoded red fluorescent proteins with a large Stokes shift (LSSRFPs) can be efficiently co-excited with common green FPs both under single- and two-photon microscopy, thus enabling dual-color imaging using a single laser. Recent progress in protein development resulted in a great variety of novel LSSRFPs; however, the selection of the right LSSRFP for a given application is hampered by the lack of a side-by-side comparison of the LSSRFPs' performance. In this study, we employed rational design and random mutagenesis to convert conventional bright RFP mScarlet into LSSRFP, called LSSmScarlet, characterized by excitation/emission maxima at 470/598 nm. In addition, we utilized the previously reported LSSRFPs mCyRFP1, CyOFP1, and mCRISPRed as templates for directed molecular evolution to develop their optimized versions, called dCyRFP2s, dCyOFP2s and CRISPRed2s. We performed a quantitative assessment of the developed LSSRFPs and their precursors in vitro on purified proteins and compared their brightness at 488 nm excitation in the mammalian cells. The monomeric LSSmScarlet protein was successfully utilized for the confocal imaging of the structural proteins in live mammalian cells and multicolor confocal imaging in conjugation with other FPs. LSSmScarlet was successfully applied for dual-color two-photon imaging in live mammalian cells. We also solved the X-ray structure of the LSSmScarlet protein at the resolution of 1.4 Å that revealed a hydrogen bond network supporting excited-state proton transfer (ESPT). Quantum mechanics/molecular mechanics molecular dynamic simulations confirmed the ESPT mechanism of a large Stokes shift. Structure-guided mutagenesis revealed the role of R198 residue in ESPT that allowed us to generate a variant with improved pH stability. Finally, we showed that LSSmScarlet protein is not appropriate for STED microscopy as a consequence of LSSRed-to-Red photoconversion with high-power 775 nm depletion light.


Asunto(s)
Sustancias Luminiscentes/química , Proteínas Luminiscentes/química , Clonación Molecular , Células HeLa , Humanos , Sustancias Luminiscentes/aislamiento & purificación , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/aislamiento & purificación , Simulación de Dinámica Molecular , Estructura Molecular , Proteína Fluorescente Roja
8.
ACS Sens ; 6(7): 2563-2573, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34148347

RESUMEN

A new chloride-sensitive red fluorescent protein derived from Entacmaea quadricolor is described. We found that mBeRFP exhibited moderate sensitivity to chloride and, via site-directed mutagenesis (S94V and R205Y), we increased the chloride affinity by more than an order of magnitude (kd = 106 ± 6 mM) at physiological pH. In addition, cis-trans isomerization of the chromophore produces a dual emission band with different chloride sensitivities, which allowed us to develop a ratiometric methodology to measure intracellular chloride concentrations.


Asunto(s)
Cloruros , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/genética , Mutagénesis Sitio-Dirigida , Proteína Fluorescente Roja
9.
Front Mol Biosci ; 8: 633217, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763453

RESUMEN

Genetically encoded probes with red-shifted absorption and fluorescence are highly desirable for imaging applications because they can report from deeper tissue layers with lower background and because they provide additional colors for multicolor imaging. Unfortunately, red and especially far-red fluorescent proteins have very low quantum yields, which undermines their other advantages. Elucidating the mechanism of nonradiative relaxation in red fluorescent proteins (RFPs) could help developing ones with higher quantum yields. Here we consider two possible mechanisms of fast nonradiative relaxation of electronic excitation in RFPs. The first, known as the energy gap law, predicts a steep exponential drop of fluorescence quantum yield with a systematic red shift of fluorescence frequency. In this case the relaxation of excitation occurs in the chromophore without any significant changes of its geometry. The second mechanism is related to a twisted intramolecular charge transfer in the excited state, followed by an ultrafast internal conversion. The chromophore twisting can strongly depend on the local electric field because the field can affect the activation energy. We present a spectroscopic method of evaluating local electric fields experienced by the chromophore in the protein environment. The method is based on linear and two-photon absorption spectroscopy, as well as on quantum-mechanically calculated parameters of the isolated chromophore. Using this method, which is substantiated by our molecular dynamics simulations, we obtain the components of electric field in the chromophore plane for seven different RFPs with the same chromophore structure. We find that in five of these RFPs, the nonradiative relaxation rate increases with the strength of the field along the chromophore axis directed from the center of imidazolinone ring to the center of phenolate ring. Furthermore, this rate depends on the corresponding electrostatic energy change (calculated from the known fields and charge displacements), in quantitative agreement with the Marcus theory of charge transfer. This result supports the dominant role of the twisted intramolecular charge transfer mechanism over the energy gap law for most of the studied RFPs. It provides important guidelines of how to shift the absorption wavelength of an RFP to the red, while keeping its brightness reasonably high.

10.
Adv Healthc Mater ; 9(12): e2000364, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32406199

RESUMEN

Rapid and sensitive detection of thrombin is imperative for the early diagnosis, prevention, and treatment of thrombin-related diseases. Here, an ultrasensitive and rapid thrombin biosensor is developed based on rationally designed trifunctional protein HTs, comprising three functional units, including a far-red fluorescent protein smURFP, hydrophobin HGFI, and a thrombin cleavage site (TCS). smURFP is used as a detection signal to eliminate any interference from the autofluorescence of sample matrix to increase detection sensitivity. HGFI serve as an adhesive unit to allow rapid immobilization of HTs on a multiwall plate. The TCS linking HGFI and smURFP function as a sensing element to recognize and detect thrombin. HTs immobilization is symmetrically optimized and characterized. Thrombin assay reveals the specific recognition of active thrombin in samples and the hydrolysis of the immobilized HTs, resulting in a decrease in the fluorescence intensity of the sample in a thrombin concentration-dependent manner. The limit of detection (LOD) is as low as 0.2 am in the serum. To the authors' knowledge, this is the lowest LOD ever reported for any thrombin biosensor. This study sheds light on the engineering of multifunctional proteins for biosensing.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Trombina , Límite de Detección , Proteínas
11.
Int J Biol Macromol ; 155: 551-559, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32243936

RESUMEN

The crystal structure of monomeric red fluorescent protein FusionRed (λex/λem 580/608 mn) has been determined at 1.09 Å resolution and revealed two alternative routes of post-translational chemistry, resulting in distinctly different products. The refinement occupancies suggest the 60:40 ratio of the mature Met63-Tyr64-Gly65 chromophore and uncyclized chromophore-forming tripeptide with the protein backbone cleaved between Met63 and the preceding Phe62 and oxidized Cα-Cß bond of Tyr64. We analyzed the structures of FusionRed and several related red fluorescent proteins, identified structural elements causing hydrolysis of the peptide bond, and verified their impact by single point mutagenesis. These findings advance the understanding of the post-translational chemistry of GFP-like fluorescent proteins beyond the canonical cyclization-dehydration-oxidation mechanism. They also show that impaired cyclization does not prevent chromophore-forming tripeptide from further transformations enabled by the same set of catalytic residues. Our mutagenesis efforts resulted in inhibition of the peptide backbone cleavage, and a FusionRed variant with ~30% improved effective brightness.


Asunto(s)
Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Cristalografía por Rayos X , Proteínas Luminiscentes/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Homología de Secuencia , Proteína Fluorescente Roja
12.
Sensors (Basel) ; 19(13)2019 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-31284557

RESUMEN

Genetically encoded fluorescent indicators typically consist of the sensitive and reporter protein domains connected with the amino acid linkers. The final performance of a particular indicator may depend on the linker length and composition as strong as it depends on the both domains nature. Here we aimed to optimize interdomain linkers in VSD-FR189-188-a recently described red fluorescent protein-based voltage indicator. We have tested 13 shortened linker versions and monitored the dynamic range, response speed and polarity of the corresponding voltage indicator variants. While the new indicators didn't show a contrast enhancement, some of them carrying very short interdomain linkers responded 25-fold faster than the parental VSD-FR189-188. Also we found the critical linker length at which fluorescence response to voltage shift changes its polarity from negative to positive slope. Our observations thus make an important contribution to the designing principles of the fluorescent protein-derived voltage indicators.


Asunto(s)
Técnicas Biosensibles/métodos , Electrofisiología/métodos , Proteínas Luminiscentes/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Células HEK293 , Humanos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Potenciales de la Membrana , Microscopía Fluorescente/instrumentación , Técnicas de Placa-Clamp/instrumentación , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Relación Estructura-Actividad , Proteína Fluorescente Roja
13.
J Biomed Opt ; 23(3): 1-11, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29500873

RESUMEN

Caspase-3 is known for its role in apoptosis and programmed cell death regulation. We detected caspase-3 activation in vivo in tumor xenografts via shift of mean fluorescence lifetimes of a caspase-3 sensor. We used the genetically encoded sensor TR23K based on the red fluorescent protein TagRFP and chromoprotein KFP linked by 23 amino acid residues (TagRFP-23-KFP) containing a specific caspase cleavage DEVD motif to monitor the activity of caspase-3 in tumor xenografts by means of fluorescence lifetime imaging-Forster resonance energy transfer. Apoptosis was induced by injection of paclitaxel for A549 lung adenocarcinoma and etoposide and cisplatin for HEp-2 pharynx adenocarcinoma. We observed a shift in lifetime distribution from 1.6 to 1.9 ns to 2.1 to 2.4 ns, which indicated the activation of caspase-3. Even within the same tumor, the lifetime varied presumably due to the tumor heterogeneity and the different depth of tumor invasion. Thus, processing time-resolved fluorescence images allows detection of both the cleaved and noncleaved states of the TR23K sensor in real-time mode during the course of several weeks noninvasively. This approach can be used in drug screening, facilitating the development of new anticancer agents as well as improvement of chemotherapy efficiency and its adaptation for personal treatment.


Asunto(s)
Antineoplásicos/farmacología , Caspasa 3/análisis , Caspasa 3/genética , Proteínas Luminiscentes/genética , Imagen Óptica/métodos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Células A549 , Animales , Técnicas Biosensibles/métodos , Caspasa 3/metabolismo , Femenino , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteína Fluorescente Roja
14.
Biochem Biophys Res Commun ; 447(3): 508-12, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24732352

RESUMEN

Red fluorescent proteins (RFPs) are useful tools for live cell and multi-color imaging in biological studies. However, when labeling proteins in secretory pathway, many RFPs are prone to form artificial puncta, which may severely impede their further uses. Here we report a fast and easy method to evaluate RFPs fusion properties by attaching RFPs to an environment sensitive membrane protein Orai1. In addition, we revealed that intracellular artificial puncta are actually colocalized with lysosome, thus besides monomeric properties, pKa value of RFPs is also a key factor for forming intracellular artificial puncta. In summary, our current study provides a useful guide for choosing appropriate RFP for labeling secretory membrane proteins. Among RFPs tested, mOrange2 is highly recommended based on excellent monomeric property, appropriate pKa and high brightness.


Asunto(s)
Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/metabolismo , Imagen Molecular/métodos , Coloración y Etiquetado/métodos , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Vías Secretoras , Proteína Fluorescente Roja
15.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1850-60, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23999308

RESUMEN

A key property of proteins of the green fluorescent protein (GFP) family is their ability to form a chromophore group by post-translational modifications of internal amino acids, e.g. Ser65-Tyr66-Gly67 in GFP from the jellyfish Aequorea victoria (Cnidaria). Numerous structural studies have demonstrated that the green GFP-like chromophore represents the `core' structure, which can be extended in red-shifted proteins owing to modifications of the protein backbone at the first chromophore-forming position. Here, the three-dimensional structures of green laGFP (λex/λem = 502/511 nm) and red laRFP (λex/λem ≃ 521/592 nm), which are fluorescent proteins (FPs) from the lancelet Branchiostoma lanceolatum (Chordata), were determined together with the structure of a red variant laRFP-ΔS83 (deletion of Ser83) with improved folding. Lancelet FPs are evolutionarily distant and share only ∼20% sequence identity with cnidarian FPs, which have been extensively characterized and widely used as genetically encoded probes. The structure of red-emitting laRFP revealed three exceptional features that have not been observed in wild-type fluorescent proteins from Cnidaria reported to date: (i) an unusual chromophore-forming sequence Gly58-Tyr59-Gly60, (ii) the presence of Gln211 at the position of the conserved catalytic Glu (Glu222 in Aequorea GFP), which proved to be crucial for chromophore formation, and (iii) the absence of modifications typical of known red chromophores and the presence of an extremely unusual covalent bond between the Tyr59 C(ß) atom and the hydroxyl of the proximal Tyr62. The impact of this covalent bond on the red emission and the large Stokes shift (∼70 nm) of laRFP was verified by extensive structure-based site-directed mutagenesis.


Asunto(s)
Proteínas Luminiscentes/química , Tirosina/química , Animales , Cristalografía por Rayos X , Proteínas Fluorescentes Verdes/química , Anfioxos , Unión Proteica , Proteína Fluorescente Roja
16.
Theranostics ; 2(2): 215-26, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22375160

RESUMEN

We report a new technique to detect enzyme activity inside cells. The method based on Fluorescence Lifetime Imaging (FLIM) technology allows one to follow sensor cleavage by proteolytic enzyme caspase-3. Specifically, we use the FLIM FRET of living cells via the confocal fluorescence microscopy. A specially designed lentivector pLVT with the DNA fragment of TagRFP-23-KFP was applied for transduction of A549 cell lines. Computer simulations are carried out to estimate FRET efficiency and to analyze possible steric restrictions of the reaction between the substrate TagRFP-23-KFP and caspase-3 dimer. Successful use of the fuse protein TagRFP-23-KFP to register the caspase-3 activation based on average life-time measurements is demonstrated. We show that the average life-time distribution is dramatically changed for cells with the modified morphology that is typical for apoptosis. Namely, the short-lived component at 1.8-2.1 ns completely disappears and the long-lived component appears at 2.4-2.6 ns. The latter is a fingerprint of the TagRFP molecule released after cleavage of the TagRFP-23-KFP complex by caspase-3. Analysis of life-time distributions for population of cells allows us to discriminate apoptotic and surviving cells within single frame and to peform statistical analysis of drug efficiency. This system can be adjusted for HTS by using special readers oriented on measurements of fluorescence life-time.

17.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-590562

RESUMEN

Objective To construct thioredoxin and APE/ref-1 fusion protein expression vector and to investigate their subcellular localization of the fusion proteins in 293Tcells.Methods The APE/ref-1 cDNA was cloned by RT-PCR from PC12 cell.APE/ref-1-EGFP fusion protein expression vector was constructed through subcloning.Thioredoxin cDNA was subcloned into pDSred1-1 from pQE30-TRX plasmid by PCR,and thioredoxin-DsRed fusion protein expression vector was constructed in pCMV5 plasmid.The expression and subcellular localization of the fusion proteins in 293T cells transfected with the vectors by calcium phosphate was analyzed by fluorescent microscopy.Results The results demonstrated that thioredoxin——DsRed and APE/ref-1-EGFP fusion protein expression vectors were successfully constructed and expressed in 293T cells.APE/ref-1-EGFP fusion protein was located only in nucleus,and thioredoxin-DsRed fusion protein was located in cytoplasm as well as nucleus.ConclusionThis study has set up a solid base for further to study on the dynamic interaction between thioredoxin and APE/ref-1 fusion proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA