Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gene ; 897: 148085, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38104950

RESUMEN

INTRODUCTION: Hereditary antithrombin (AT) deficiency is a rare autosomal dominant disorder with significant clinical heterogeneity. In the study, we identified a patient with AT deficiency caused by compound heterozygous mutations in the SERPINC1 gene. METHODS: A total of 9 individuals from three generations were investigated. The mutations were identified by direct sequencing of SERPINC1. Multiple in silico tools were programmed to predict the conservation of mutations and the effect on the AT structure. The coagulation state was evaluated by the thrombin generation assay. Recombinant AT was overexpressed in HEK293T cells; the mRNA level was determined using RT-qPCR. Western blotting, ELISA, and immunocytofluorescence were applied to characterize the recombinant AT protein. RESULTS: The proband was a 26-year-old male who experienced recurrent venous thrombosis. He presented the type I deficiency with 33 % AT activity and a synchronized decrease in AT antigen. Genetic screening revealed that he carried a heterozygous c.318_319insT (p.Asn107*) in exon 2 and a heterozygous c.922G > T (p.Gly308Cys) in exon 5, both of which were completely conserved in homologous species and resulted in enhanced thrombin generation capability. Hydrophobicity analysis suggested that the p.Gly308Cys mutation may interfere with the hydrophobic state of residues 307-313. In vitro expression studies indicated that the levels of the recombinant protein AT-G308C decreased to 46.98 % ± 2.94 % and 41.35 % ± 1.48 % in transfected cell lysates and media, respectively. After treatment with a proteasome inhibitor (MG132), the quantity of AT-G308C protein in the cytoplasm was replenished to a level comparable to that of the wild type. The mRNA level of AT-N107* was significantly reduced and the recombinant protein AT-N107* was not detected in either the lysate or the culture media. CONCLUSION: These two mutations were responsible for the AT defects and clinical phenotypes of the proband. The p.Gly308Cys mutation could lead to proteasome-dependent degradation of the AT protein in the cytoplasm by altering local residue hydrophobicity. The c.318_319insT could eliminate aberrant transcripts by triggering nonsense-mediated mRNA degradation. Both mutations resulted in type I AT deficiency.


Asunto(s)
Deficiencia de Antitrombina III , Antitrombina III , Trombofilia , Adulto , Humanos , Masculino , Antitrombina III/genética , Deficiencia de Antitrombina III/genética , Células HEK293 , Mutación , Linaje , Proteínas Recombinantes/genética , ARN Mensajero , Trombina
2.
Int J Hematol ; 117(4): 523-529, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36526880

RESUMEN

Hereditary antithrombin (AT) deficiency is an autosomal dominant inherited thrombophilia. In three pedigrees of hereditary type I AT deficiency, we identified novel variants c.126delC (p.Lys43Serfs*7), c.165C > G (p.Tyr55*), and c.546delA (p.Lys182Asnfs*102) in the open reading frame encoding AT in each patient. Each of these aberrant variants leads to premature termination of AT protein synthesis. To investigate whether these abnormal variants are involved in the pathogenesis of type I AT deficiency, we analyzed the function of these variants in HEK293 cells. Results of western blot analysis and immunofluorescence microscopy showed that all abnormal variants were expressed intracellularly, but p.Lys43Serfs*7 and p.Tyr55* protein were aggregated in the cells. These three variants were not detected in the spent culture medium, indicating that these novel variants affect protein secretion. In summary, we suggest that these variants in the AT-encoding gene are translated in the cell, but form abnormal proteins that form aggregates and/or inhibit secretion. These results provide insight into novel mechanisms of type I AT deficiency and potential therapies for the condition.


Asunto(s)
Deficiencia de Antitrombina III , Antitrombina III , Trombofilia , Humanos , Antitrombina III/genética , Antitrombina III/metabolismo , Deficiencia de Antitrombina III/genética , Codón sin Sentido , Células HEK293 , Trombofilia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA