Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Heliyon ; 10(16): e35830, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224249

RESUMEN

The influence of 150 keV argon ions at fluences in the range of 1 × 1012-1 × 1016 ions/cm2 on the stability of the multilayer stack Pd/Zr/Pd/Ti/Pd thin films system, deposited on Ti and Ti6Al4V substrates, under thermal annealing in an H2 environment was investigated. For samples deposited on Ti substrate, RBS revealed structural instability that increases with fluence. This is evidenced by a decrease in the intensity of layers accompanied by increased consumption of the Pd layers. This effect led to the initial individual layers becoming one compound layer and the formation of a new Ti-O-Pd layer, indicating a complete intermixing of layers at 1 × 1016 ions/cm2. However, for the samples deposited on Ti6Al4V substrate, the Pd layers could still be identified and resolved, indicating an incomplete intermixing of layers. XRD revealed the structural transformation of layers via an intermixing process resulting in the formation of two new phases, TiH2 and ZrH2, classified as face-centered tetragonal (FCT) crystal structures. ERDA confirmed the presence of hydrides in the system indicating the absorption of H into the system to a maximum H amount of ∼5.2 at.%, at higher fluence, for the same multilayer stack deposited on both substrates.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39178029

RESUMEN

BACKGROUND: Septic cardiomyopathy (SCM) with diastolic dysfunction carries a poor prognosis, and the mechanisms underlying the development of diastolic dysfunction remain unclear. Matrix metalloproteinase-8 (MMP-8) is released from neutrophils and degrades collagen I. MMP-8 levels correlate with SCM severity. OBJECTIVES: We scrutinized, for the first time, the direct impact of MMP-8 on cardiac systolic and diastolic functions. METHODS: Isolated rat hearts were perfused with Krebs-Henseleit solution in a Langendorff setup with computer-controlled filling pressures of both ventricles at isovolumetric regime. The end-diastolic pressure (EDP) varied periodically between 3 and 20 mmHg. After baseline recordings, MMP-8 (100 µg/ml) was added to the perfusion. Short-axis views of both ventricles were continuously acquired by echocardiography. RESULTS: MMP-8 perfusion resulted in progressive decline in peak systolic pressures (Psys) in both ventricles, but without significant changes in their end-systolic pressure-area relationships (ESPARs). Counterintuitively, conspicuous leftward shifts of the end-diastolic pressure-area relationships (EDPARs) were observed in both ventricles. The LV end-diastolic area (EDA) decreased by 32.8±5.7%, (p=0.008), at EDP of 10.5±0.4 mmHg, when LV Psys dropped by 20%. The decline of Psys was primarily due to the decrease in EDA and restoring the baseline EDA by increasing EDP recovered 81.33 ± 5.87% of the pressure drops. CONCLUSION: Collagen I generates tensile (eccentric) stress, and its degradation by MMP-8 causes EDPVR leftward shift, resulting in diastolic and systolic dysfunctions. The diastolic dysfunction explains the clinically observed fluid unresponsiveness, while the decrease in EDV diminishes the systolic functions. MMP-8 can explain the development of SCM with diastolic dysfunction.

3.
J Synchrotron Radiat ; 31(Pt 5): 1134-1145, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39120914

RESUMEN

The ability to freely control the polarization of X-rays enables measurement techniques relying on circular or linear dichroism, which have become indispensable tools for characterizing the properties of chiral molecules or magnetic structures. Therefore, the demand for polarization control in X-ray free-electron lasers is increasing to enable polarization-sensitive dynamical studies on ultrafast time scales. The soft X-ray branch Athos of SwissFEL was designed with the aim of providing freely adjustable and arbitrary polarization by building its undulator solely from modules of the novel Apple X type. In this paper, the magnetic model of the linear inclined and circular Apple X polarization schemes are studied. The polarization is characterized by measuring the angular electron emission distributions of helium for various polarizations using cold target recoil ion momentum spectroscopy. The generation of fully linear polarized light of arbitrary angle, as well as elliptical polarizations of varying degree, are demonstrated.

4.
Sensors (Basel) ; 24(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38931519

RESUMEN

The domain of gamma-ray imaging necessitates technological advancements to surmount the challenge of energy-selective imaging. Conventional systems are constrained in their dynamic focus on specific energy ranges, a capability imperative for differentiating gamma-ray emissions from diverse sources. This investigation introduces an innovative imaging system predicated on the detection of recoil electrons, addressing the demand for adjustable energy selectivity. Our methodology encompasses the design of a gamma-ray imaging system that leverages recoil electron detection to execute energy-selective imaging. The system's efficacy was investigated experimentally, with emphasis on the adaptability of the energy selection window. The experimental outcomes underscore the system's adeptness at modulating the energy selection window, adeptly discriminating gamma rays across a stipulated energy spectrum. The results corroborate the system's adaptability, with an adjustable energy resolution that coincides with theoretical projections and satisfies the established criteria. This study affirms the viability and merits of utilizing recoil electrons for tunable energy-selective gamma-ray imaging. The system's conceptualization and empirical validation represent a notable progress in gamma-ray imaging technology, with prospective applications extending from medical imaging to astrophysics. This research sets a solid foundation for subsequent inquiries and advancements in this domain.

5.
Materials (Basel) ; 17(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893838

RESUMEN

The WMoTaNbV alloy has shown promise for applications as a solid state hydrogen storage material. It absorbs significant quantities of H directly from the atmosphere, trapping it with high energy. In this work, the dynamics of the absorption of hydrogen isotopes are studied by determining the activation energy for the solubility and the solution enthalpy of H in the WMoTaNbV alloy. The activation energy was studied by heating samples in a H atmosphere at temperatures ranging from 20 °C to 400 °C and comparing the amounts of absorbed H. The solution activation energy EA of H was determined to be EA=0.22±0.02 eV (21.2 ± 1.9 kJ/mol). The performed density functional theory calculations revealed that the neighbouring host atoms strongly influenced the solution enthalpy, leading to a range of theoretical values from -0.40 eV to 0.29 eV (-38.6 kJ/mol to 28.0 kJ/mol).

6.
J Environ Radioact ; 277: 107449, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776789

RESUMEN

The occurrence of enhanced concentration of the radium triplet 226Ra, 228Ra and 224Ra is a frequently observed property of highly saline anoxic deep water as used e.g. in geothermal plants. In the present study we develop a model to explain the observed activity levels in the brines. The model considers processes at the rock-fluid interface of the aquifer like alpha recoil, sorption and surface precipitation and is implemented by means of a Monte Carlo simulation. The outcomes of the simulations indicate the dominating role of fine-grained constituents of the reservoir rock, e.g. claystone with enhanced specific activities of the natural decay chains. Mass fractions of such material in the order of a few percent are sufficient to result in radium fluid concentrations >1 Bq l-1. Also a generally valid relation between the Th/U ratio in the aquifer rock and the 228Ra/226Ra activity ratio in the fluid was found. This link improves the agreement between radium fluid data and the mean Th/U ratio of the Earth's crust. The 224Ra/228Ra fluid ratios reflect the transport time from the location of last radium release to the sampling point. The model findings were applied to a well investigated aquifer used in a geothermal plant in the North German Basin. An eight component system of the aquifer rock was established as the basis for the simulation of the radium concentrations in the deep fluid. The comparison between simulation and fluid analyses revealed a degree of radium sorption of about 50 %, which is necessary to match the model's results with the measurements. On the other hand, the 228Ra/226Ra fluid ratio of the brine was well reproduced by the simulation, showing the suitability of the model even in complex heterogeneous reservoirs. From the 224Ra/228Ra fluid ratios a transition from pore-to fracture-guided transport < 10 m distance from the production well is suggested. Precipitates from such deep fluids occurring after changes of the thermodynamic conditions are able to accumulate radium isotopes in Ba/Sr-sulphate phases. The time dependence of the radioactive disequilibrium between 226Ra, 228Ra and its child 228Th in such scales is described by a mathematical model and is applied to two different uptake models. Based on this approach, age determinations on precipitates found in different components of a geothermal plant are conducted. They reveal the triggering of scale formation due to modifications in the plant. The results are suitable for drawing conclusions about the operation of the system, which result in a reduction in the amount of scale and a reduction in downtimes.


Asunto(s)
Monitoreo de Radiación , Radio (Elemento) , Contaminantes Radiactivos del Agua , Radio (Elemento)/análisis , Contaminantes Radiactivos del Agua/análisis , Monitoreo de Radiación/métodos , Agua Subterránea/química , Método de Montecarlo , Fuentes de Información
7.
Physiol Rep ; 12(8): e16008, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38631890

RESUMEN

We executed this study to determine if chemerin-like receptor 1 (CMKLR1), a Gi/o protein-coupled receptor expressed by leukocytes and non-leukocytes, contributes to the development of phenotypic features of non-atopic asthma, including airway hyperresponsiveness (AHR) to acetyl-ß-methylcholine chloride, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Accordingly, we quantified sequelae of non-atopic asthma in wild-type mice and mice incapable of expressing CMKLR1 (CMKLR1-deficient mice) following cessation of acute inhalation exposure to either filtered room air (air) or ozone (O3), a criteria pollutant and non-atopic asthma stimulus. Following exposure to air, lung elastic recoil and airway responsiveness were greater while the quantity of adiponectin, a multi-functional adipocytokine, in bronchoalveolar lavage (BAL) fluid was lower in CMKLR1-deficient as compared to wild-type mice. Regardless of genotype, exposure to O3 caused AHR, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Nevertheless, except for minimal genotype-related effects on lung hyperpermeability and BAL adiponectin, we observed no other genotype-related differences following O3 exposure. In summary, we demonstrate that CMKLR1 limits the severity of innate airway responsiveness and lung elastic recoil but has a nominal effect on lung pathophysiology induced by acute exposure to O3.


Asunto(s)
Asma , Ozono , Neumonía , Animales , Ratones , Masculino , Ozono/efectos adversos , Adiponectina/farmacología , Pulmón , Neumonía/inducido químicamente , Líquido del Lavado Bronquioalveolar , Receptores Acoplados a Proteínas G , Asma/genética , Quimiocinas/farmacología , Péptidos y Proteínas de Señalización Intercelular/farmacología
8.
Proc Natl Acad Sci U S A ; 121(11): e2304009121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442161

RESUMEN

Elastin is an extracellular matrix material found in all vertebrates. Its reversible elasticity, robustness, and low stiffness are essential for the function of arteries, lungs, and skin. It is among the most resilient elastic materials known: During a human lifetime, arterial elastin undergoes in excess of 2 × 109 stretching/contracting cycles without replacement, and slow oxidative hardening has been identified as a limiting factor on human lifespan. For over 50 y, the mechanism of entropic recoil has been controversial. Herein, we report a combined NMR and thermomechanical study that establishes the hydrophobic effect as the primary driver of elastin function. Water ordering at the solvent:protein interface was observed as a function of stretch using double quantum 2H NMR, and the most extensive thermodynamic analysis performed to date was obtained by measuring elastin length and volume as a function of force and temperature in normal water, heavy water and with cosolvents. When stretched, elastin's heat capacity increases, water is ordered proportional to the degree of stretching, the internal energy decreases, and heat is released in excess of the work performed. These properties show that recoil in elastin under physiological conditions is primarily driven by the hydrophobic effect rather than by configurational entropy as is the case for rubber. Consistent with this conclusion are decreases in the thermodynamic signatures when cosolvents that alter the hydrophobic effect are introduced. We propose that hydrophobic effect-driven recoil, as opposed to a configurational entropy mechanism where hardening from crystallization can occur, is the origin of elastin's unusual resilience.


Asunto(s)
Elastina , Animales , Humanos , Arterias/química , Cristalización , Elastina/química , Termodinámica , Agua
9.
Front Bioeng Biotechnol ; 12: 1352387, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419729

RESUMEN

Mild traumatic brain injury (mTBI) may be caused by occupational hazards military personnel encounter, such as falls, shocks, exposure to blast overpressure events, and recoil from weapon firing. While it is important to protect against injurious head impacts, the repeated exposure of Canadian Armed Forces (CAF) service members to sub-concussive events during the course of their service may lead to a significant reduction in quality of life. Symptoms may include headaches, difficulty concentrating, and noise sensitivity, impacting how personnel complete their duties and causing chronic health issues. This study investigates how the exposure to the recoil force of long-range rifles results in head motion and brain deformation. Direct measurements of head kinematics of a controlled population of military personnel during firing events were obtained using instrumented mouthguards. The experimentally measured head kinematics were then used as inputs to a finite element (FE) head model to quantify the brain strains observed during each firing event. The efficacy of a concept recoil mitigation system (RMS), designed to mitigate loads applied to the operators was quantified, and the RMS resulted in lower loading to the operators. The outcomes of this study provide valuable insights into the magnitudes of head kinematics observed when firing long-range rifles, and a methodology to quantify effects, which in turn will help craft exposure guidelines, guide training to mitigate the risk of injury, and improve the quality of lives of current and future CAF service members and veterans.

10.
Nucl Med Biol ; 130-131: 108890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38402673

RESUMEN

BACKGROUND: Targeted alpha therapy is one of the most powerful therapeutical modalities available in nuclear medicine. It's therapeutic potency is based on the nuclides that emit one or several alpha particles providing strong and highly localized therapeutic effects. However, some of these radionuclides, like e.g.223Ra or 225Ac decay in cascades, where the radioactive progeny originating from the consecutive alpha-decays may leave the original vector and cause unwanted irradiation of non-target organs. This progeny, even if partially retained in target tissues by internalization processes, typically do not follow the fate of originally targeted radiopharmaceutical and potentially spread over body following their own biodistribution. In this study we aimed to estimate 211Pb/211Bi progeny fate from the 223Ra surface-labelled TiO2 nanoparticles in vitro and the fate of 211Pb in vivo in a mice model. RESULTS: In vitro stability studies have shown significant differences between the release of the mother 223Ra and its progeny (211Pb, 211Bi) in all the biological matrices that have been tested. The lowest released activities were measured in saline, resulting in less than 5 % of released activity for all nuclides. Contrary to that, the highest released activity of 223Ra of up to 10 % within 48 h was observed in 5 % solution of albumin. The released activity of its progeny; the 211Pb and 211Bi was in the range of 20-40 % in this test medium. Significantly higher released activities of 211Pb and 211Bi compared to 223Ra by at least 10 % was observed in each biological medium, except saline, where no significant differences were observed. The in vivo biodistribution studies results in a mice model, show similar pattern, where it was found that even after accumulation of nanoparticles in target tissues, approximately 10 % of 211Pb is continuously released into the blood stream within 24 h, followed by its natural accumulation in kidneys. CONCLUSION: This study confirms our assumption that the progeny formed in a chain alpha decay of a certain nuclide, in this case the 223Ra, can be released from its original vector, leave the target tissue, relocate and could be deposited in non-target organs. We did not observe complete progeny wash-out from its original target tissues in our model. This indicates strong dependence of the progeny hot atom fate after its release from the original radiopharmaceutical preparation on multiple factors, like their internalization and retention in cells, cell membranes, extracellular matrices, protein binding, etc. We hypothesize, that also the primary tumour or metastasis size, their metabolic activity may significantly influence progeny fate in vivo, directly impacting the dose delivered to non-target tissues and organs. Therefore a bottom-up approach should be followed and detailed pre-/clinical studies on the release and biodistribution of radioactive progeny originating from the chain alpha emitters should be preferably performed.


Asunto(s)
Nanopartículas , Radiofármacos , Ratones , Animales , Radiofármacos/uso terapéutico , Distribución Tisular , Plomo , Radioisótopos/uso terapéutico
11.
Microsc Microanal ; 30(1): 49-58, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38232229

RESUMEN

In this paper, the capability for quantifying the composition of Ba-doped SrTiO layers from an atom probe measurement was explored. Rutherford backscattering spectrometry and time-of-flight/energy elastic recoil detection were used to benchmark the composition where the amount of titanium was intentionally varied between samples. The atom probe results showed a significant divergence from the benchmarked composition. The cause was shown to be a significant oxygen underestimation (≳14 at%). The ratio between oxygen and titanium for the samples varied between 2.6 and 12.7, while those measured by atom probe tomography were lower and covered a narrower range between 1.4 and 1.7. This difference was found to be associated with the oxygen and titanium predominantly field evaporating together as a molecular ion. The evaporation fields and bonding chemistries determined showed inconsistencies for explaining the oxygen underestimation and ion species measured. The measured ion charge state was in excellent agreement with that predicted by the Kingham postionization theory. Only by considering the measured ion species, their evaporation fields, the coordination chemistry, the analysis conditions, and some recently reported density functional theory modeling for oxide field emission were we able to postulate a field emission and oxygen neutral desorption process that may explain our results.

12.
Chinese Medical Ethics ; (6): 483-488, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1012926

RESUMEN

Science and technology ethics governance, how to put ethics first? The purpose of "technological innovation, ethics first" is to build an ethical soft landing mechanism for scientific and technological innovation. Researchers of science and technology ethics should start from the practice of international and domestic science and technology ethics governance, and explore the realistic way of science and technology ethics governance on the basis of understanding and thinking about the innovative culture, value orientation and operation mechanism. First of all, it should be noted that seeking technical, management and institutional solutions in the current ethical governance of science and technology may not be perfect and thorough, but operable management measures can be explored and continuously improved under the framework of mainstream scientific and technological innovation. Secondly, the co-governance of science and technology ethics needs to further explore the corresponding group co-governance epistemology facing pluralistic co-governance. Finally, the ethical governance of science and technology should pay attention to the principle of proportionality, and avoid both lax and being too strict.

13.
J Endovasc Ther ; : 15266028231215284, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38059463

RESUMEN

PURPOSE: Recoil following balloon angioplasty of tibial arteries is a known mechanism of lumen loss and widely considered to be a contributing factor in early failure or later restenosis. The Serranator balloon has been designed to provide a controlled lumen gain while minimizing vessel injury. The objective of this study was to assess the ability to define and measure postangioplasty recoil in infrapopliteal arteries and to compare recoil after serration angioplasty and plain balloon angioplasty (POBA). METHODS: This multi-center, sequential comparative study included patients with de novo or restenotic lesions of infrapopliteal arteries up to 22 cm in length. Patients were enrolled sequentially and underwent alternating POBA or serration angioplasty with Serranator. The study captured angiographic imaging at pre, immediately post, and 15-minute after angioplasty. Vessel recoil, final diameter stenosis, and dissection were compared using core laboratory analysis. RESULTS: This study enrolled 36 patients who underwent treatment of 39 infrapopliteal lesions. There was no significant difference between Serranator (n=20) and POBA (n=19) with respect to baseline demographics and lesion characteristics. Arterial recoil (>10%) occurred in 25% of Serranator-treated lesions versus 64% in POBA-treated lesions (p=0.02. Clinically relevant recoil (>30%) was present after serration angioplasty in 10% of patients and after POBA in 53% (p=0.01). There was no significant difference in technical success (100% for both), dissection rate between Serranator (5%) and POBA (5.2%). CONCLUSIONS: Arterial recoil occurs after infrapopliteal angioplasty. Serration angioplasty produces substantially less arterial recoil compared with POBA. Additional studies are needed to assess whether reduced arterial recoil translates into superior long-term clinical outcomes. CLINICAL IMPACT: Prior studies have demonstrated over 90% recoil in patients after balloon angioplasty (POBA) of the infrapopliteal vessels, which significantly impacts the durability and impact of endovascular interventions in this clinical space. This study compared recoil after infrapopliteal angioplasty with serration angioplasty and POBA. Serration angioplasty produces substantially less arterial recoil compared with POBA. Additional studies are needed to assess whether reduced arterial recoil translates into superior long-term clinical outcomes.

14.
J Funct Biomater ; 14(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38132813

RESUMEN

The unique physical properties of heavy ion beams, particularly their distinctive depth-dose distribution and sharp lateral dose reduction profiles, have led to their widespread adoption in tumor therapy worldwide. However, the physical properties of heavy ion beams must be investigated to deliver a sufficient dose to tumors without damaging organs at risk. These studies should be performed on phantoms made of biomaterials that closely mimic human tissue. Polymers can serve as soft tissue substitutes and are suitable materials for building radiological phantoms due to their physical, mechanical, biological, and chemical properties. Extensive research, development, and applications of polymeric biomaterials have been encouraged due to these properties. In this study, we investigated the ionization, recoils, phonon release, collision events, and lateral straggle properties of polymeric biomaterials that closely resemble soft tissue using lithium-ion beams and Monte Carlo Transport of Ions in Matter simulation. The results indicated that the Bragg peak position closest to soft tissue was achieved with a 7.3% difference in polymethylmethacrylate, with an average recoils value of 10.5%. Additionally, average values of 33% were observed in collision events and 22.6% in lateral straggle. A significant contribution of this study to the existing literature lies in the exploration of secondary interactions alongside the assessment of linear energy transfer induced by the 7Li beam used for treatment. Furthermore, we analyzed the tissue-equivalent properties of polymer biomaterials using heavy ion beams, taking into account phonon release resulting from ionization, recoils, lateral straggle, and all other interactions. This approach allows for the evaluation of the most suitable polymeric biomaterials for heavy ion therapy while considering the full range of interactions involved.

15.
J Anus Rectum Colon ; 7(4): 301-306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900698

RESUMEN

Objectives: The aim of this study was to evaluate the effectiveness of transperineal repair of secondary perineal hernia (SPH) using a mesh with a memory-recoil ring. Methods: Seven patients with SPH who underwent transperineal repair (TPR) between July 2010 and May 2022 were retrospectively analyzed. TPR was performed using a mesh with a memory-recoil ring. Results: All SPHs developed after abdominoperineal resections in patients with anorectal malignancies. The median longitudinal and transverse diameters of the hernia orifice were 8 (7-10) cm and 6 (5-7) cm, respectively. In all cases, the mesh was fixed to the ischial tuberosity, residual levator muscle, coccygeus muscle, and coccyx after thorough dissection of the sac. The median operation time was 154 (142-280) min. Perioperative complications occurred in 2 cases (29%). One was enterotomy, which caused postoperative mesh infection requiring extraction of the mesh. The other was vaginal injury, which resulted in vaginal fistula but closed spontaneously. The median postoperative length of stay was 9 (5-14) days. No recurrence was observed during a median follow-up of 35 (9-151) months. Conclusions: TPR using a mesh with a memory-recoil ring is safe, feasible and promising technique for SPH repairs.

16.
Philos Trans R Soc Lond B Biol Sci ; 378(1891): 20220540, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37839445

RESUMEN

Chewing is widespread across vertebrates, including mammals, lepidosaurs, and ray-finned and cartilaginous fishes, yet common wisdom about one group-amphibians-is that they swallow food whole, without processing. Earlier salamander studies lacked analyses of internal kinematics of the tongue, analyses of muscle function, and sampled few individuals, which may have caused erroneous conclusions. Specifically, without tongue and food kinematics, intraoral behaviours are difficult to disambiguate. We hypothesized that ambystomatid salamanders use diverse intraoral behaviours, including chewing, and tested this hypothesis with biplanar videofluoroscopy, X-ray reconstruction of moving morphology, and fluoromicrometry. We generated musculoskeletal kinematic profiles for intraoral behaviours in Axolotls (Ambystoma mexicanum), including three-dimensional skeletal kinematics associated with feeding, for gape, cranial and pectoral girdle rotations, and tongue translations. We also measured muscle fibre and muscle-tendon unit strains for six muscles involved in generating skull, jaw and tongue kinematics (adductor mandibulae, depressor mandibulae, geniohyoid, sternohyoid, epaxialis and hypaxialis). A principal component analysis recovered statistically significant differences between behaviour cycles, classified based on food movements as either chewing or transport. Thus, our data suggest that ambystomatid salamanders use a previously unrecognized diversity of intraoral behaviours, including chewing. Combined with existing knowledge, our data suggest that chewing is a basal trait for tetrapods and jaw-bearing vertebrates. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.


Asunto(s)
Masticación , Urodelos , Humanos , Animales , Rayos X , Conducta Alimentaria/fisiología , Cráneo , Fenómenos Biomecánicos , Mamíferos
17.
J Exp Biol ; 226(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37767690

RESUMEN

Many animals use a combination of skeletal muscle and elastic structures to amplify power output for fast motions. Among vertebrates, tendons in series with skeletal muscle are often implicated as the primary power-amplifying spring, but muscles contain elastic structures at all levels of organization, from the muscle tendon to the extracellular matrix to elastic proteins within sarcomeres. The present study used ex vivo muscle preparations in combination with high-speed video to quantify power output, as the product of force and velocity, at several levels of muscle organization to determine where power amplification occurs. Dynamic ramp-shortening contractions in isolated frog flexor digitorum superficialis brevis were compared with isotonic power output to identify power amplification within muscle fibers, the muscle belly, free tendon and elements external to the muscle tendon. Energy accounting revealed that artifacts from compliant structures outside of the muscle-tendon unit contributed significant peak instantaneous power. This compliance included deflection of clamped bone that stored and released energy contributing 195.22±33.19 W kg-1 (mean±s.e.m.) to the peak power output. In addition, we found that power detected from within the muscle fascicles for dynamic shortening ramps was 338.78±16.03 W kg-1, or approximately 1.75 times the maximum isotonic power output of 195.23±8.82 W kg-1. Measurements of muscle belly and muscle-tendon unit also demonstrated significant power amplification. These data suggest that intramuscular tissues, as well as bone, have the capacity to store and release energy to amplify whole-muscle power output.


Asunto(s)
Músculo Esquelético , Tendones , Animales , Fenómenos Biomecánicos , Músculo Esquelético/fisiología , Tendones/fisiología , Contracción Muscular/fisiología , Sarcómeros
18.
J Exp Biol ; 226(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37727106

RESUMEN

Changes in temperature alter muscle kinetics and in turn affect whole-organism performance. Some organisms use the elastic recoil of biological springs, structures which are far less temperature sensitive, to power thermally robust movements. For jumping frogs, the use of elastic energy in tendons is facilitated through a geometric latching mechanism that operates through dynamic changes in the mechanical advantage (MA) of the hindlimb. Despite the well-documented use of elastic energy storage, frog jumping is a locomotor behavior that is significantly affected by changes in temperature. Here, we used an in vitro muscle preparation interacting in real time with an in silico model of a legged jumper to understand how changes in temperature affect the flow of energy in a system using a MA latch. We used the plantaris longus muscle-tendon unit (MTU) to power a virtual limb with changing MA and a mass being accelerated through a real-time feedback controller. We quantified the amount of energy stored in and recovered from elastic structures and the additional contribution of direct muscle work after unlatching. We found that temperature altered the duration of the energy loading and recovery phase of the in vitro/in silico experiments. We found that the early phase of loading was insensitive to changes in temperature. However, an increase in temperature did increase the rate of force development, which in turn allowed for increased energy storage in the second phase of loading. We also found that the contribution of direct muscle work after unlatching was substantial and increased significantly with temperature. Our results show that the thermal robustness achieved by an elastic mechanism depends strongly on the nature of the latch that mediates energy flow, and that the relative contribution of elastic and direct muscle energy likely shapes the thermal sensitivity of locomotor systems.


Asunto(s)
Contracción Muscular , Músculo Esquelético , Animales , Temperatura , Contracción Muscular/fisiología , Fenómenos Biomecánicos , Músculo Esquelético/fisiología , Extremidad Inferior , Anuros/fisiología
19.
Biomimetics (Basel) ; 8(5)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37754152

RESUMEN

The recoil motions in free swimming, given by lateral and angular rigid motions due to the interaction with the surrounding water, are of great importance for a correct evaluation of both the forward locomotion speed and efficiency of a fish-like body. Their contribution is essential for calculating the actual movements of the body rear end whose prominent influence on the generation of the proper body deformation was established a long time ago. In particular, the recoil motions are found here to promote a dramatic improvement of the performance when damaged fishes, namely for a partial functionality of the tail or even for its complete loss, are considered. In fact, the body deformation, which turns out to become oscillating and symmetric in the extreme case, is shown to recover in the water frame a kind of undulation leading to a certain locomotion speed though at the expense of a large energy consumption. There has been a deep interest in the subject since the infancy of swimming studies, and a revival has recently arisen for biomimetic applications to robotic fish-like bodies. We intend here to apply a theoretical impulse model to the oscillating fish in free swimming as a suitable test case to strengthen our belief in the beneficial effects of the recoil motions. At the same time, we intend to exploit the linearity of the model to detect from the numerical simulations the intrinsic physical reasons related to added mass and vorticity release behind the experimental observations.

20.
R Soc Open Sci ; 10(8): 230007, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37650058

RESUMEN

The objective of the study was to explore how biarticular mechanisms of the gastrocnemii muscles may provide an important energy source for power and work at the ankle joint with increasing running speed. Achilles tendon force was quantified as a proxy of the triceps surae muscle force and the contribution of the monoarticular soleus and the biarticular gastrocnemii to the mechanical power and work performed at the ankle joint was investigated in three running speeds (transition 2.0 m s-1, slow 2.5 m s-1, fast 3.5 m s-1). Although the contribution of the soleus was higher, biarticular mechanisms of the gastrocnemii accounted for a relevant part of the performed mechanical power and work at the ankle joint. There was an ankle-to-knee joint energy transfer in the first part of the stance phase and a knee-to-ankle joint energy transfer during push-off via the gastrocnemii muscles, which made up 16% of the total positive ankle joint work. The rate of knee-to-ankle joint energy transfer increased with speed, indicating a speed-related participation of biarticular mechanisms in running. This energy transfer via the gastrocnemii seems to occur with negligible energy absorption/production from the quadriceps vasti contractile elements and is rather an energy exchange between elastic structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA