Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 13(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38994931

RESUMEN

James German's work to establish the natural history and cancer risk associated with Bloom syndrome (BS) has had a strong influence on the generation of scientists and clinicians working to understand other RECQ deficiencies and heritable cancer predisposition syndromes. I summarize work by us and others below, inspired by James German's precedents with BS, to understand and compare BS with the other heritable RECQ deficiency syndromes with a focus on Werner syndrome (WS). What we know, unanswered questions and new opportunities are discussed, as are potential ways to treat or modify WS-associated disease mechanisms and pathways.


Asunto(s)
Síndrome de Bloom , RecQ Helicasas , Síndrome de Werner , Humanos , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , RecQ Helicasas/deficiencia , Síndrome de Bloom/genética , Síndrome de Werner/genética , Historia del Siglo XX
2.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958505

RESUMEN

Arsenic is a carcinogenic metalloid toxicant widely found in the natural environment. Acute or prolonged exposure to arsenic causes a series of damages to the organs, mainly the liver, such as hepatomegaly, liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Therefore, it is imperative to seek drugs to prevent arsenic-induced liver injury. Quinazolines are a class of nitrogen heterocyclic compounds with biological and pharmacological effects in vivo and in vitro. This study was designed to investigate the ameliorating effects of quinazoline derivatives on arsenic-induced liver injury and its molecular mechanism. We investigated the mechanism of the quinazoline derivative KZL-047 in preventing and ameliorating arsenic-induced liver injury in vitro by cell cycle and apoptosis. We performed real-time fluorescence quantitative polymerase chain reaction (qPCR) and Western blotting combined with molecular docking. In vivo, the experiments were performed to investigate the mechanism of KZL-047 in preventing and ameliorating arsenic-induced liver injury using arsenic-infected mice. Physiological and biochemical indices of liver function in mouse serum were measured, histopathological changes in liver tissue were observed, and immunohistochemical staining was used to detect changes in the expression of RecQ-family helicases in mouse liver tissue. The results of in vitro experiments showed that sodium arsenite (SA) inhibited the proliferation of L-02 cells, induced apoptosis, blocked the cell cycle at the G1 phase, and decreased the expression of RecQ family helicase; after KZL-047 treatment in arsenic-induced L-02 cells, the expression of RecQ family helicase was upregulated, and the apoptosis rate was slowed, leading to the restoration of the cell viability level. KZL-047 inhibited arsenic-induced oxidative stress, alleviated oxidative damage and lipid peroxidation in vivo, and ameliorated arsenic toxicity-induced liver injury. KZL-047 restored the expression of RecQ family helicase proteins, which is consistent with the results of in vitro studies. In summary, KZL-047 can be considered a potential candidate for the treatment of arsenic-induced liver injury.


Asunto(s)
Arsénico , Arsenitos , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Ratones , Animales , Arsénico/toxicidad , Arsénico/metabolismo , RecQ Helicasas/metabolismo , Quinazolinas/farmacología , Quinazolinas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Simulación del Acoplamiento Molecular , Hígado/metabolismo , Estrés Oxidativo , Cirrosis Hepática/metabolismo , Arsenitos/toxicidad
3.
J Biol Chem ; 299(9): 105081, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37495105

RESUMEN

RecQ helicases are highly conserved between bacteria and humans. These helicases unwind various DNA structures in the 3' to 5'. Defective helicase activity elevates genomic instability and is associated with predisposition to cancer and/or premature aging. Recent single-molecule analyses have revealed the repetitive unwinding behavior of RecQ helicases from Escherichia coli to humans. However, the detailed mechanisms underlying this behavior are unclear. Here, we performed single-molecule studies of WRN-1 Caenorhabditis elegans RecQ helicase on various DNA constructs and characterized WRN-1 unwinding dynamics. We showed that WRN-1 persistently repeated cycles of DNA unwinding and rewinding with an unwinding limit of 25 to 31 bp per cycle. Furthermore, by monitoring the ends of the displaced strand during DNA unwinding we demonstrated that WRN-1 reels in the ssDNA overhang in an ATP-dependent manner. While WRN-1 reeling activity was inhibited by a C. elegans homolog of human replication protein A, we found that C. elegans replication protein A actually switched the reiterative unwinding activity of WRN-1 to unidirectional unwinding. These results reveal that reeling-in ssDNA is an intermediate step in the reiterative unwinding process for WRN-1 (i.e., the process proceeds via unwinding-reeling-rewinding). We propose that the reiterative unwinding activity of WRN-1 may prevent extensive unwinding, allow time for partner proteins to assemble on the active region, and permit additional modulation in vivo.

4.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36555294

RESUMEN

DNA helicase unwinding activity can be inhibited by small molecules and by covalently bound DNA lesions. Little is known about the relationships between the structural features of DNA lesions and their impact on unwinding rates and processivities. Employing E.coli RecQ helicase as a model system, and various conformationally defined DNA lesions, the unwinding rate constants kobs = kU + kD, and processivities P = (kU/(kU + kD) were determined (kU, unwinding rate constant; kD, helicase-DNA dissociation rate constant). The highest kobs values were observed in the case of intercalated benzo[a]pyrene (BP)-derived adenine adducts, while kobs values of guanine adducts with minor groove or base-displaced intercalated adduct conformations were ~10-20 times smaller. Full unwinding was observed in each case with the processivity P = 1.0 (100% unwinding). The kobs values of the non-bulky lesions T(6-4)T, CPD cyclobutane thymine dimers, and a guanine oxidation product, spiroiminodihydantoin (Sp), are up to 20 times greater than some of the bulky adduct values; their unwinding efficiencies are strongly inhibited with processivities P = 0.11 (CPD), 0.062 (T(6-4)T), and 0.63 (Sp). These latter observations can be accounted for by correlated decreases in unwinding rate constants and enhancements in the helicase DNA complex dissociation rate constants.


Asunto(s)
Escherichia coli , RecQ Helicasas , RecQ Helicasas/metabolismo , Escherichia coli/metabolismo , ADN/química , Relación Estructura-Actividad , Guanina/metabolismo , Aductos de ADN/metabolismo
5.
Cancers (Basel) ; 14(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36230663

RESUMEN

Around 50% of the familial breast cancer (BC) cases are estimated to be caused by germline variants in known low-, moderate-, and high-risk susceptibility genes, while the other half is of unknown genetic origin. In the present study, we wanted to evaluate the role of the RECQ helicases, some of which have been studied in the past as candidates, with unclear results about their role in the disease. Using next-generation sequencing (NGS) technology, we analyzed the whole coding sequence of BLM, RECQL1, RECQL4, RECQL5, and WRN in almost 2000 index cases from BC Spanish families that had previously tested negative for the known BC susceptibility genes (BRCAX) and compared the results with the controls extracted from gnomAD. Our results suggest that BLM, RECQL1, RECQL4, and WRN do not play a major role in BC susceptibility. However, in the combined analysis, joining the present results with those previously reported in a series of 1334 BC Spanish patients and controls, we found a statistically significant association between Loss of Function (LoF) variants in RECQL5 and BC risk, with an OR of 2.56 (p = 0.009; 95% CI, 1.18-4.98). Our findings support our previous work and places the RECQL5 gene as a new moderate-risk BC gene.

7.
FEBS J ; 289(2): 394-416, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34355508

RESUMEN

RecQ helicases are superfamily 2 (SF2) DNA helicases that unwind a wide spectrum of complex DNA structures in a 3' to 5' direction and are involved in maintaining genome stability. RecQ helicases from protozoan parasites have gained significant interest in recent times because of their involvement in cellular DNA repair pathways, making them important targets for drug development. In this study, we report biophysical and biochemical characterization of the catalytic core of a RecQ helicase from hemoflagellate protozoan parasite Leishmania donovani. Among the two putative RecQ helicases identified in L. donovani, we cloned, overexpressed and purified the catalytic core of LdRECQb. The catalytic core was found to be very efficient in unwinding a wide variety of DNA substrates like forked duplex, 3' tailed duplex and Holliday junction DNA. Interestingly, the helicase core also unwound blunt duplex with slightly less efficiency. The enzyme exhibited high level of DNA-stimulated ATPase activity with preferential stimulation by forked duplex, Holliday junction and 3' tailed duplex. Walker A motif lysine mutation severely affected the ATPase activity and significantly affected unwinding activity. Like many other RecQ helicases, L. donovani RECQb also possesses strand annealing activity. Unwinding of longer DNA substrates by LdRECQb catalytic core was found to be stimulated in the presence of replication protein A (LdRPA-1) from L. donovani. Detailed biochemical characterization and comparison of kinetic parameters indicate that L. donovani RECQb shares considerable functional similarity with human Bloom syndrome helicase.


Asunto(s)
Leishmania donovani/genética , Leishmaniasis Visceral/genética , RecQ Helicasas/genética , Proteína de Replicación A/genética , Catálisis , Dominio Catalítico/genética , ADN/genética , Replicación del ADN/genética , ADN Cruciforme/genética , ADN de Cadena Simple/genética , Humanos , Leishmania donovani/patogenicidad , Leishmaniasis Visceral/parasitología , Especificidad por Sustrato/genética
8.
Front Mol Biosci ; 8: 791194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869606

RESUMEN

The human RECQ4 gene encodes an ATP-dependent DNA helicase that contains a conserved superfamily II helicase domain located at the center of the polypeptide. RECQ4 is one of the five RECQ homologs in human cells, and its helicase domain is flanked by the unique amino and carboxyl termini with sequences distinct from other members of the RECQ helicases. Since the identification of the RECQ4 gene in 1998, multiple RECQ4 mutations have been linked to the pathogenesis of three clinical diseases, which are Rothmund-Thomson syndrome, Baller-Gerold syndrome, and RAPADILINO. Patients with these diseases show various developmental abnormalities. In addition, a subset of RECQ4 mutations are associated with high cancer risks, especially for osteosarcoma and/or lymphoma at early ages. The discovery of clinically relevant RECQ4 mutations leads to intriguing questions: how is the RECQ4 helicase responsible for preventing multiple clinical syndromes? What are the mechanisms by which the RECQ4 disease mutations cause tissue abnormalities and drive cancer formation? Furthermore, RECQ4 is highly overexpressed in many cancer types, raising the question whether RECQ4 acts not only as a tumor suppressor but also an oncogene that can be a potential new therapeutic target. Defining the molecular dysfunctions of different RECQ4 disease mutations is imperative to improving our understanding of the complexity of RECQ4 clinical phenotypes and the dynamic roles of RECQ4 in cancer development and prevention. We will review recent progress in examining the molecular and biochemical properties of the different domains of the RECQ4 protein. We will shed light on how the dynamic roles of RECQ4 in human cells may contribute to the complexity of RECQ4 clinical phenotypes.

9.
Gene ; 787: 145647, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33845136

RESUMEN

RecQ4, a member of the RecQ helicase family, is required for the maintenance of genome integrity. RecQ4 has been shown to promote the following two DNA double-strand break (DSB) repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). However, its molecular function has not been fully elucidated. In the present study, we aimed to investigate the role of RecQ4 in NHEJ using Xenopus egg extracts. The N-terminal 598 amino acid region of Xenopus RecQ4 (N598), which lacks a central helicase domain and a downstream C-terminal region, was added to the extracts and its effect on the joining of DNA ends was analyzed. We found that N598 inhibited the joining of linearized DNA ends in the extracts. In addition, N598 inhibited DSB-induced chromatin binding of Ku70, which is essential for NHEJ, while the DSB-induced chromatin binding of the HR-associated proteins, replication protein A (RPA) and Rad51, increased upon the addition of N598. These results suggest that RecQ4 possibly influences the choice of the DSB repair pathway by influencing the association of the Ku heterodimer with the DNA ends.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Autoantígeno Ku/metabolismo , RecQ Helicasas/metabolismo , Proteínas de Xenopus/fisiología , Animales , Cromatina , ADN/metabolismo , Autoantígeno Ku/antagonistas & inhibidores , Unión Proteica , RecQ Helicasas/genética , Xenopus laevis
10.
Methods Mol Biol ; 2281: 93-115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33847954

RESUMEN

The ability of magnetic tweezers to apply forces and measure molecular displacements has resulted in its extensive use to study the activity of enzymes involved in various aspects of nucleic acid metabolism. These studies have led to the discovery of key aspects of protein-protein and protein-nucleic acid interaction, uncovering dynamic heterogeneities that are lost to ensemble averaging in bulk experiments. The versatility of magnetic tweezers lies in the possibility and ease of tracking multiple parallel single-molecule events to yield statistically relevant single-molecule data. Moreover, they allow tracking both fast millisecond dynamics and slow processes (spanning several hours). In this chapter, we present the protocols used to study the interaction between E. coli SSB, single-stranded DNA (ssDNA), and E. coli RecQ helicase using magnetic tweezers. In particular, we propose constant force and force modulation assays to investigate SSB binding to DNA, as well as to characterize various facets of RecQ helicase activity stimulation by SSB.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , RecQ Helicasas/metabolismo , Imagen Individual de Molécula/instrumentación , Proteínas de Unión al ADN/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Fenómenos Magnéticos , Unión Proteica , Factores de Tiempo
11.
Curr Biol ; 31(7): 1499-1507.e3, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33740426

RESUMEN

Sexual reproduction shuffles the parental genomes to generate new genetic combinations. To achieve that, the genome is subjected to numerous double-strand breaks, the repair of which involves two crucial decisions: repair pathway and repair template.1 Use of crossover pathways with the homologous chromosome as template exchanges genetic information and directs chromosome segregation. Crossover repair, however, can compromise the integrity of the repair template and is therefore tightly regulated. The extent to which crossover pathways are used during sister-directed repair is unclear because the identical sister chromatids are difficult to distinguish. Nonetheless, indirect assays have led to the suggestion that inter-sister crossovers, or sister chromatid exchanges (SCEs), are quite common.2-11 Here we devised a technique to directly score physiological SCEs in the C. elegans germline using selective sister chromatid labeling with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU). Surprisingly, we find SCEs to be rare in meiosis, accounting for <2% of repair events. SCEs remain rare even when the homologous chromosome is unavailable, indicating that almost all sister-directed repair is channeled into noncrossover pathways. We identify two mechanisms that limit SCEs. First, SCEs are elevated in the absence of the RecQ helicase BLMHIM-6. Second, the synaptonemal complex-a conserved interface that promotes crossover repair12,13-promotes SCEs when localized between the sisters. Our data suggest that crossover pathways in C. elegans are only used to generate the single necessary link between the homologous chromosomes. Noncrossover pathways repair almost all other breaks, regardless of the repair template.


Asunto(s)
Caenorhabditis elegans , Meiosis , Intercambio de Cromátides Hermanas , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans , Cromátides/genética , Roturas del ADN de Doble Cadena , Reparación del ADN
12.
Front Cell Dev Biol ; 9: 640755, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718381

RESUMEN

RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund-Thomson syndrome (RTS), Baller-Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.

13.
Front Genet ; 12: 634789, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777104

RESUMEN

DNA damage repair response is an important biological process involved in maintaining the fidelity of the genome in eukaryotes and prokaryotes. Several proteins that play a key role in this process have been identified. Alterations in these key proteins have been linked to different diseases including cancer. BLM is a 3'-5' ATP-dependent RecQ DNA helicase that is one of the most essential genome stabilizers involved in the regulation of DNA replication, recombination, and both homologous and non-homologous pathways of double-strand break repair. BLM structure and functions are known to be conserved across many species like yeast, Drosophila, mouse, and human. Genetic mutations in the BLM gene cause a rare, autosomal recessive disorder, Bloom syndrome (BS). BS is a monogenic disease characterized by genomic instability, premature aging, predisposition to cancer, immunodeficiency, and pulmonary diseases. Hence, these characteristics point toward BLM being a tumor suppressor. However, in addition to mutations, BLM gene undergoes various types of alterations including increase in the copy number, transcript, and protein levels in multiple types of cancers. These results, along with the fact that the lack of wild-type BLM in these cancers has been associated with increased sensitivity to chemotherapeutic drugs, indicate that BLM also has a pro-oncogenic function. While a plethora of studies have reported the effect of BLM gene mutations in various model organisms, there is a dearth in the studies undertaken to investigate the effect of its oncogenic alterations. We propose to rationalize and integrate the dual functions of BLM both as a tumor suppressor and maybe as a proto-oncogene, and enlist the plausible mechanisms of its deregulation in cancers.

14.
Biochem Biophys Res Commun ; 542: 29-33, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33485211

RESUMEN

Aging has been considered a phenomenon that can be only applied to cells or organisms. Here, we show that RecQ helicase from E. coli displays an aging phenomenon: this macromolecular motor loses its structure and function after hydrolyzing a certain number of ATP molecules. The aging process was only triggered by repeated catalytic cycles. These observations lead to a new concept: macromolecule aging.

15.
Front Microbiol ; 11: 613674, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33469454

RESUMEN

Chili peppers are an important food additive used in spicy cuisines worldwide. However, the yield and quality of chilis are threatened by anthracnose disease caused by Colletotrichum acutatum. Despite the impact of C. acutatum on chili production, the genes involved in fungal development and pathogenicity in this species have not been well characterized. In this study, through T-DNA insertional mutagenesis, we identified a mutant strain termed B7, which is defective for the growth of C. acutatum on a minimal nutrient medium. Our bioinformatics analysis revealed that a large fragment DNA (19.8 kb) is deleted from the B7 genome, thus resulting in the deletion of three genes, including CaGpiP1 encoding a glycosylphosphatidyl-inisotol (GPI)-anchored protein, CaNRT2.1 encoding a membrane-bound nitrate/nitrite transporter, and CaRQH1 encoding a RecQ helicase protein. In addition, T-DNA is inserted upstream of the CaHP1 gene encoding a hypothetical protein. Functional characterization of CaGpiP1, CaNRT2.1, and CaHP1 by targeted gene disruption and bioassays indicated that CaNRT2.1 is responsible for the growth-defective phenotype of B7. Both B7 and CaNRT2.1 mutant strains cannot utilize nitrate as nitrogen sources, thus restraining the fungal growth on a minimal nutrient medium. In addition to CaNRT2.1, our results showed that CaGpiP1 is a cell wall-associated GPI-anchored protein. However, after investigating the functions of CaGpiP1 and CaHP1 in fungal pathogenicity, growth, development and stress tolerance, we were unable to uncover the roles of these two genes in C. acutatum. Collectively, in this study, our results identify the growth-defective strain B7 via T-DNA insertion and reveal the critical role of CaNRT2.1 in nitrate transportation for the fungal growth of C. acutatum.

16.
Mol Cell ; 76(5): 699-711.e6, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31542296

RESUMEN

Rad52 is a key factor for homologous recombination (HR) in yeast. Rad52 helps assemble Rad51-ssDNA nucleoprotein filaments that catalyze DNA strand exchange, and it mediates single-strand DNA annealing. We find that Rad52 has an even earlier function in HR in restricting DNA double-stranded break ends resection that generates 3' single-stranded DNA (ssDNA) tails. In fission yeast, Exo1 is the primary resection nuclease, with the helicase Rqh1 playing a minor role. We demonstrate that the choice of two extensive resection pathways is regulated by Rad52. In rad52 cells, the resection rate increases from ∼3-5 kb/h up to ∼10-20 kb/h in an Rqh1-dependent manner, while Exo1 becomes dispensable. Budding yeast Rad52 similarly inhibits Sgs1-dependent resection. Single-molecule analysis with purified budding yeast proteins shows that Rad52 competes with Sgs1 for DNA end binding and inhibits Sgs1 translocation along DNA. These results identify a role for Rad52 in limiting ssDNA generated by end resection.


Asunto(s)
Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Reparación del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Cinética , Mutación , Dominios Proteicos , Transporte de Proteínas , Proteína Recombinante y Reparadora de ADN Rad52/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
17.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462559

RESUMEN

Hepatitis C virus (HCV) NS3 protein possesses protease and helicase activities and is considered an oncoprotein in virus-derived hepatocellular carcinoma. The NS3-associated oncogenesis has been studied but not fully understood. In this study, we have identified novel interactions of the NS3 protein with DNA repair factors, Werner syndrome protein (WRN) and Ku70, in both an HCV subgenomic replicon system and Huh7 cells expressing NS3. HCV NS3 protein inhibits WRN-mediated DNA repair and reduces the repair efficiency of nonhomologous end joining. It interferes with Ku70 recruitment to the double-strand break sites and alters the nuclear distribution of WRN-Ku repair complex. In addition, WRN is a substrate of the NS3/4A protease; the level of WRN protein is regulated by both the proteasome degradation pathway and HCV NS3/4A protease activity. The dual role of HCV NS3 and NS3/4A proteins in regulating the function and expression level of the WRN protein intensifies the effect of impairment on DNA repair. This may lead to an accumulation of DNA mutations and genome instability and, eventually, tumor development.IMPORTANCE HCV infection is a worldwide problem of public health and a major contributor to hepatocellular carcinoma. The single-stranded RNA virus with RNA-dependent RNA polymerase experiences a high error rate and develops strategies to escape the immune system and hepatocarcinogenesis. Studies have revealed the involvement of HCV proteins in the impairment of DNA repair. The present study aimed to further elucidate mechanisms by which the viral NS3 protein impairs the repair of DNA damage. Our results clearly indicate that HCV NS3/4A protease targets WRN for degradation, and, at the same time, diminishes the repair efficiency of nonhomologous end joining by interfering with the recruitment of Ku protein to the DNA double-strand break sites. The study describes a novel mechanism by which the NS3 protein influences DNA repair and provides new insight into the molecular mechanism of HCV pathogenesis.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Hepacivirus/genética , Hepacivirus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Helicasa del Síndrome de Werner/metabolismo , Línea Celular , ADN/metabolismo , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Células HEK293 , Hepatitis C Crónica/genética , Humanos , Autoantígeno Ku/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas no Estructurales Virales/genética , Helicasa del Síndrome de Werner/fisiología
18.
Molecules ; 24(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067825

RESUMEN

G-quadruplex (G4) structures are highly stable four-stranded DNA and RNA secondary structures held together by non-canonical guanine base pairs. G4 sequence motifs are enriched at specific sites in eukaryotic genomes, suggesting regulatory functions of G4 structures during different biological processes. Considering the high thermodynamic stability of G4 structures, various proteins are necessary for G4 structure formation and unwinding. In a yeast one-hybrid screen, we identified Slx9 as a novel G4-binding protein. We confirmed that Slx9 binds to G4 DNA structures in vitro. Despite these findings, Slx9 binds only insignificantly to G-rich/G4 regions in Saccharomyces cerevisiae as demonstrated by genome-wide ChIP-seq analysis. However, Slx9 binding to G4s is significantly increased in the absence of Sgs1, a RecQ helicase that regulates G4 structures. Different genetic and molecular analyses allowed us to propose a model in which Slx9 recognizes and protects stabilized G4 structures in vivo.


Asunto(s)
Proteínas de Unión al ADN/química , G-Cuádruplex , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Genoma/genética , Conformación de Ácido Nucleico , Unión Proteica , RecQ Helicasas/química , RecQ Helicasas/genética , Proteínas Ribosómicas/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Termodinámica
19.
Cancer Manag Res ; 10: 6649-6668, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30584360

RESUMEN

BACKGROUND: Five RecQ helicase family members have a role in maintaining genome stability. However, their prognostic roles in breast cancer remain unknown. We aimed to investigate the prognostic values of the RecQ family and clinical outcomes in breast cancer. METHODS: We used the Kaplan-Meier Plotter database (http://kmplot.com/analysis) to analyze prognostic values of RecQ-family mRNA expression in all breast cancers and in different intrinsic subtypes and clinicopathological characteristics. Protein-expression levels of WRN and RECQL4 were confirmed by immunohistochemistry (IHC) in breast cancer tissues. RESULTS: Increased expression of RECQL mRNA was significantly associated with reduced relapse-free survival (RFS) and postprogression survival (PPS) in all breast cancers, and improved overall survival (OS) in patients with basal-like breast cancer and in mutant-p53-type breast cancer patients. Increased expression of BLM mRNA was correlated with reduced distant metastasis-free survival (DMFS) in all patients. Increased expression of WRN mRNA was associated with improved OS and RFS in breast cancer patients. Increased expression of RECQL4 mRNA was associated with reduced OS, DMFS, and RFS in all breast cancers, and with reduced OS in patients with luminal A, HER2-positive, ER-positive, and PR-positive breast cancer. Increased expression of RECQL5 mRNA was associated with improved RFS in all patients, and with improved OS in patients with lymph-node-negative breast cancer, but with reduced OS in patients with HER2-positive breast cancer. IHC staining confirmed that high expression of WRN was correlated with increased OS and high expression of RECQL4 associated with reduced OS at protein levels. CONCLUSION: mRNA-expression levels of RecQ members were significantly correlated with prognosis in breast cancer patients. These preliminary findings require further study to determine whether RecQ-targeting reagents might be developed for clinical application in breast cancer.

20.
Cell Rep ; 24(4): 947-961.e7, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-30044990

RESUMEN

Mutations in BLM helicase predispose Bloom syndrome (BS) patients to a wide spectrum of cancers. We demonstrate that MIB1-ubiquitylated BLM in G1 phase functions as an adaptor protein by enhancing the binding of transcription factor c-Jun and its E3 ligase, Fbw7α. BLM enhances the K48/K63-linked ubiquitylation on c-Jun, thereby enhancing the rate of its subsequent degradation. Functionally defective Fbw7α mutants prevalent in multiple human cancers are reactivated by BLM. However, BS patient-derived BLM mutants cannot potentiate Fbw7α-dependent c-Jun degradation. The decrease in the levels of c-Jun in cells expressing BLM prevents effective c-Jun binding to 2,584 gene promoters. This causes decreases in the transcript and protein levels of c-Jun targets in BLM-expressing cells, resulting in attenuated c-Jun-dependent effects during neoplastic transformation. Thus, BLM carries out its function as a tumor suppressor by enhancing c-Jun turnover and thereby preventing its activity as a proto-oncogene.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Genes jun , Proteínas Proto-Oncogénicas c-jun/metabolismo , RecQ Helicasas/metabolismo , Animales , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Carcinogénesis , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Fase G1 , Células HCT116 , Células HEK293 , Humanos , Ratones , Ratones Desnudos , Mutación , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-jun/genética , RecQ Helicasas/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA