Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(15): e35624, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170520

RESUMEN

Asynchronous interconnection is essential for integrating AC networks operating at different frequencies, typically 50 Hz and 60 Hz. This need arises from distributed power generation methods, including offshore renewable sources and diverse regional grid configurations. Advanced strategies are required to overcome these frequency differences and ensure uninterrupted power transfer. High-Voltage Direct Current (HVDC) transmission systems facilitate efficient power exchange, enhancing grid reliability and stability. This study focuses on optimizing the Proportional-plus-Integral (PI) controller parameters within a 20 MVA Voltage Source Converters (VSC)-based HVDC system to enable asynchronous interconnection between offshore and onshore AC networks. The offshore VSC regulates active and reactive power, while the onshore VSC controls DC voltage and reactive power. A vector control approach with symmetric optimum PI tuning is proposed for a comprehensive performance assessment of the VSC-based HVDC transmission system. The effectiveness of the tuned PI controller parameters is evaluated through four test cases using MATLAB/Simulink for offline simulation and Typhoon HIL604 for real-time validation. These cases involve abrupt changes in reference active and reactive power for the offshore VSC; and in reference reactive power and DC voltage for the onshore VSC. Results demonstrate rapid and satisfactory dynamic performance across all test cases, as evidenced by offline simulations and real-time validation. The validation highlights the effectiveness of the proposed control design with symmetric optimum PI tuning, confirming its ability to enhance the overall performance of the HVDC transmission system for efficient asynchronous interconnection.

2.
Water Environ Res ; 96(7): e11074, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39015947

RESUMEN

Digital twins have been gaining an immense interest in various fields over the last decade. Bringing conventional process simulation models into (near) real time are thought to provide valuable insights for operators, decision makers, and stakeholders in many industries. The objective of this paper is to describe two methods for implementing digital twins at water resource recovery facilities and highlight and discuss their differences and preferable use situations, with focus on the automated data transfer from the real process. Case 1 uses a tailor-made infrastructure for automated data transfer between the facility and the digital twin. Case 2 uses edge computing for rapid automated data transfer. The data transfer lag from process to digital twin is low compared to the simulation frequency in both systems. The presented digital twin objectives can be achieved using either of the presented methods. The method of Case 1 is better suited for automatic recalibration of model parameters, although workarounds exist for the method in Case 2. The method of Case 2 is well suited for objectives such as soft sensors due to its integration with the SCADA system and low latency. The objective of the digital twin, and the required latency of the system, should guide the choice of method. PRACTITIONER POINTS: Various methods can be used for automated data transfer between the physical system and a digital twin. Delays in the data transfer differ depending on implementation method. The digital twin objective determines the required simulation frequency. Implementation method should be chosen based on the required simulation frequency.


Asunto(s)
Automatización , Modelos Teóricos , Simulación por Computador
3.
Water Environ Res ; 96(3): e11016, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38527902

RESUMEN

Digital transformation for the water sector has gained momentum in recent years, and many water resource recovery facilities modelers have already started transitioning from developing traditional models to digital twin (DT) applications. DTs simulate the operation of treatment plants in near real time and provide a powerful tool to the operators and process engineers for real-time scenario analysis and calamity mitigation, online process optimization, predictive maintenance, model-based control, and so forth. So far, only a few mature examples of full-scale DT implementations can be found in the literature, which only address some of the key requirements of a DT. This paper presents the development of a full-scale operational DT for the Eindhoven water resource recovery facility in The Netherlands, which includes a fully automated data-pipeline combined with a detailed mechanistic full-plant process model and a user interface co-created with the plant's operators. The automated data preprocessing pipeline provides continuous access to validated data, an influent generator provides dynamic predictions of influent composition data and allows forecasting 48 h into the future, and an advanced compartmental model of the aeration and anoxic bioreactors ensures high predictive power. The DT runs near real-time simulations every 2 h. Visualization and interaction with the DT is facilitated by the cloud-based TwinPlant technology, which was developed in close interaction with the plant's operators. A set of predefined handles are made available, allowing users to simulate hypothetical scenarios such as process and equipment failures and changes in controller settings. The combination of the advanced data pipeline and process model development used in the Eindhoven DT and the active involvement of the operators/process engineers/managers in the development process makes the twin a valuable asset for decision making with long-term reliability. PRACTITIONER POINTS: A full-scale digital twin (DT) has been developed for the Eindhoven WRRF. The Eindhoven DT includes an automated continuous data preprocessing and reconciliation pipeline. A full-plant mechanistic compartmental process model of the plant has been developed based on hydrodynamic studies. The interactive user interface of the Eindhoven DT allows operators to perform what-if scenarios on various operational settings and process inputs. Plant operators were actively involved in the DT development process to make a reliable and relevant tool with the expected added value.


Asunto(s)
Reactores Biológicos , Recursos Hídricos , Reproducibilidad de los Resultados
4.
Viruses ; 15(12)2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-38140541

RESUMEN

This study proposes a modification of the GeoCity model previously developed by the authors, detailing the age structure of the population, personal schedule on weekdays and working days, and individual health characteristics of the agents. This made it possible to build a more realistic model of the functioning of the city and its residents. The developed model made it possible to simulate the spread of three types of strain of the COVID-19 virus, and to analyze the adequacy of this model in the case of unhindered spread of the virus among city residents. Calculations based on the proposed model show that SARS-CoV 2 spreads mainly from contacts in workplaces and transport, and schoolchildren and preschool children are the recipients, not the initiators of the epidemic. The simulations showed that fluctuations in the dynamics of various indicators of the spread of SARS-CoV 2 were associated with the difference in the daily schedule on weekdays and weekends. The results of the calculations showed that the daily schedules of people strongly influence the spread of SARS-CoV 2. Under assumptions of the model, the results show that for the more contagious "rapid" strains of SARS-CoV 2 (omicron), immunocompetent people become a significant source of infection. For the less contagious "slow strains" (alpha) of SARS-CoV 2, the most active source of infection is immunocompromised individuals (pregnant women). The more contagious, or "fast" strain of the SARS-CoV 2 virus (omicron), spreads faster in public transport. For less contagious, or "slow" strains of the virus (alpha), the greatest infection occurs due to work and educational contacts.


Asunto(s)
COVID-19 , Epidemias , Embarazo , Preescolar , Humanos , Femenino , Niño , COVID-19/epidemiología , SARS-CoV-2 , Huésped Inmunocomprometido , Transportes
5.
Neuroimage ; 282: 120411, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37844771

RESUMEN

Transcranial focused ultrasound (tFUS), in which acoustic energy is focused on a small region in the brain through the skull, is a non-invasive therapeutic method with high spatial resolution and depth penetration. Image-guided navigation has been widely utilized to visualize the location of acoustic focus in the cranial cavity. However, this system is often inaccurate because of the significant aberrations caused by the skull. Therefore, acoustic simulations using a numerical solver have been widely adopted to compensate for this inaccuracy. Although the simulation can predict the intracranial acoustic pressure field, real-time application during tFUS treatment is almost impossible due to the high computational cost. In this study, we propose a neural network-based real-time acoustic simulation framework and test its feasibility by implementing a simulation-guided navigation (SGN) system. Real-time acoustic simulation is performed using a 3D conditional generative adversarial network (3D-cGAN) model featuring residual blocks and multiple loss functions. This network was trained by the conventional numerical acoustic simulation program (i.e., k-Wave). The SGN system is then implemented by integrating real-time acoustic simulation with a conventional image-guided navigation system. The proposed system can provide simulation results with a frame rate of 5 Hz (i.e., about 0.2 s), including all processing times. In numerical validation (3D-cGAN vs. k-Wave), the average peak intracranial pressure error was 6.8 ± 5.5%, and the average acoustic focus position error was 5.3 ± 7.7 mm. In experimental validation using a skull phantom (3D-cGAN vs. actual measurement), the average peak intracranial pressure error was 4.5%, and the average acoustic focus position error was 6.6 mm. These results demonstrate that the SGN system can predict the intracranial acoustic field according to transducer placement in real-time.


Asunto(s)
Encéfalo , Cráneo , Humanos , Estudios de Factibilidad , Encéfalo/diagnóstico por imagen , Cráneo/diagnóstico por imagen , Simulación por Computador , Acústica
6.
Front Bioeng Biotechnol ; 11: 1201177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456726

RESUMEN

The biomechanics of transplanted teeth remain poorly understood due to a lack of models. In this context, finite element (FE) analysis has been used to evaluate the influence of occlusal morphology and root form on the biomechanical behavior of the transplanted tooth, but the construction of a FE model is extremely time-consuming. Model order reduction (MOR) techniques have been used in the medical field to reduce computing time, and the present study aimed to develop a reduced model of a transplanted tooth using the higher-order proper generalized decomposition method. The FE model of a previous study was used to learn von Mises root stress, and axial and lateral forces were used to simulate different occlusions between 75 and 175N. The error of the reduced model varied between 0.1% and 5.9% according to the subdomain, and was the highest for the highest lateral forces. The time for the FE simulation varied between 2.3 and 7.2 h. In comparison, the reduced model was built in 17s and interpolation of new results took approximately 2.10-2s. The use of MOR reduced the time for delivering the root stresses by a mean 5.9 h. The biomechanical behavior of a transplanted tooth simulated by FE models was accurately captured with a significant decrease of computing time. Future studies could include using jaw tracking devices for clinical use and the development of more realistic real-time simulations of tooth autotransplantation surgery.

7.
Front Neuroinform ; 17: 941696, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844916

RESUMEN

Spiking neural networks (SNNs) represent the state-of-the-art approach to the biologically realistic modeling of nervous system function. The systematic calibration for multiple free model parameters is necessary to achieve robust network function and demands high computing power and large memory resources. Special requirements arise from closed-loop model simulation in virtual environments and from real-time simulation in robotic application. Here, we compare two complementary approaches to efficient large-scale and real-time SNN simulation. The widely used NEural Simulation Tool (NEST) parallelizes simulation across multiple CPU cores. The GPU-enhanced Neural Network (GeNN) simulator uses the highly parallel GPU-based architecture to gain simulation speed. We quantify fixed and variable simulation costs on single machines with different hardware configurations. As a benchmark model, we use a spiking cortical attractor network with a topology of densely connected excitatory and inhibitory neuron clusters with homogeneous or distributed synaptic time constants and in comparison to the random balanced network. We show that simulation time scales linearly with the simulated biological model time and, for large networks, approximately linearly with the model size as dominated by the number of synaptic connections. Additional fixed costs with GeNN are almost independent of model size, while fixed costs with NEST increase linearly with model size. We demonstrate how GeNN can be used for simulating networks with up to 3.5 · 106 neurons (> 3 · 1012synapses) on a high-end GPU, and up to 250, 000 neurons (25 · 109 synapses) on a low-cost GPU. Real-time simulation was achieved for networks with 100, 000 neurons. Network calibration and parameter grid search can be efficiently achieved using batch processing. We discuss the advantages and disadvantages of both approaches for different use cases.

8.
Comput Med Imaging Graph ; 104: 102165, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599223

RESUMEN

Finite element methods (FEM) are popular approaches for simulation of soft tissues with elastic or viscoelastic behavior. However, their usage in real-time applications, such as in virtual reality surgical training, is limited by computational cost. In this application scenario, which typically involves transportable simulators, the computing hardware severely constrains the size or the level of details of the simulated scene. To address this limitation, data-driven approaches have been suggested to simulate mechanical deformations by learning the mapping rules from FEM generated datasets. Prior data-driven approaches have ignored the physical laws of the underlying engineering problem and have consequently been restricted to simulation cases of simple hyperelastic materials where the temporal variations were effectively ignored. However, most surgical training scenarios require more complex hyperelastic models to deal with the viscoelastic properties of tissues. This type of material exhibits both viscous and elastic behaviors when subjected to external force, requiring the implementation of time-dependant state variables. Herein, we propose a deep learning method for predicting displacement fields of soft tissues with viscoelastic properties. The main contribution of this work is the use of a physics-guided loss function for the optimization of the deep learning model parameters. The proposed deep learning model is based on convolutional (CNN) and recurrent layers (LSTM) to predict spatiotemporal variations. It is augmented with a mass conservation law in the lost function to prevent the generation of physically inconsistent results. The deep learning model is trained on a set of FEM datasets that are generated from a commercially available state-of-the-art numerical neurosurgery simulator. The use of the physics-guided loss function in a deep learning model has led to a better generalization in the prediction of deformations in unseen simulation cases. Moreover, the proposed method achieves a better accuracy over the conventional CNN models, where improvements were observed in unseen tissue from 8% to 30% depending on the magnitude of external forces. It is hoped that the present investigation will help in filling the gap in applying deep learning in virtual reality simulators, hence improving their computational performance (compared to FEM simulations) and ultimately their usefulness.


Asunto(s)
Aprendizaje Profundo , Realidad Virtual , Simulación por Computador
9.
Health Syst (Basingstoke) ; 12(4): 375-386, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235299

RESUMEN

The implementation challenges for modelling and simulation in health and social care are well-known and understood. Yet increasing availability of data and a better understanding of the value of Operational Research (OR) applications are strengthening opportunities to support healthcare delivery. Participative approaches in healthcare modelling have shown value through stakeholder engagement and commitment towards co-creation of models and knowledge but are limited in focus on model design and development. For simulation modelling, a participative design research methodology can support development for sustained use, emphasising model usefulness and usability using iterative cycles of development and evaluation. Within a structured methodology, measures of success are built into the design process, focusing on factors which contribute to success, with implicit goals of implementation and improvement. We illustrate this through a participative case study which demonstrates development of the component parts of a real-time simulation model aimed at reducing emergency department crowding.

10.
Materials (Basel) ; 15(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36143657

RESUMEN

Although resistance spot welding (RSW) was invented at the beginning of the last century, the online-monitoring and control of RSW is still a technological challenge and of economic and ecological importance. Process, material and geometry parameters of RSW are stored in the database of the process control system. Prospectively, these accumulated data could serve as the base for data-driven and physics-based models to monitor the spot weld process in real-time. The objective of this paper is to present a finite-difference based parallel solver algorithm to simulate RSW time-efficiently. The Peaceman-Rachford scheme was combined with the Thomas algorithm to compute the electrical-thermal interdependencies of the resistance spot welding process within seconds. Finally, the electric-thermal model is verified by a convergence analysis and parameter study.

11.
Nanomaterials (Basel) ; 12(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36144949

RESUMEN

A dynamic process model for the simulation of nanoparticle fractionation in tubular centrifuges is presented. Established state-of-the-art methods are further developed to incorporate multi-dimensional particle properties (traits). The separation outcome is quantified based on a discrete distribution of particle volume, elongation and flatness. The simulation algorithm solves a mass balance between interconnected compartments which represent the separation zone. Grade efficiencies are calculated by a short-cut model involving material functions and higher dimensional particle trait distributions. For the one dimensional classification of fumed silica nanoparticles, the numerical solution is validated experimentally. A creation and characterization of a virtual particle system provides an additional three dimensional input dataset. Following a three dimensional fractionation case study, the tubular centrifuge model underlines the fact that a precise fractionation according to particle form is extremely difficult. In light of this, the paper discusses particle elongation and flatness as impacting traits during fractionation in tubular centrifuges. Furthermore, communications on separation performance and outcome are possible and facilitated by the three dimensional visualization of grade efficiency data. Future research in nanoparticle characterization will further enhance the models use in real-time separation process simulation.

12.
Heliyon ; 8(7): e09969, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35898607

RESUMEN

This paper proposes an approach to the real time simulation of photovoltaic (PV) arrays that are subjected to mismatching conditions, e.g. partial shadowing. The method, which has been named Model by Zone (MbZ), adopts the best PV model depending on the operating conditions of the cells in the module: it switches among single-diode model (SDM), linear model and constant voltage model. An optimized digital hardware architecture exploiting parallelism of operations over a FPGA system is exploited to effectively implement the proposed model. It reduces the computation time and the use of hardware resources. The good trade-off between accuracy and computation time of the proposed technique has been demonstrated in two cases of study: by evaluating the long-term PV power production of a PV field subjected to dynamic shadowing conditions and by analyzing the model performance in a maximum power point tracking (MPPT) application. In the former case, the proposed approach improves the computation time by 182.5 % with respect to methods that are available in recent literature, with a Relative Error (RE) at the Global Maximum Power Point (GMPP) lower than 0.39 % . In the MPPT application, the proposed technique allows to achieve a MAPE of 0.0319 % and 0.1892 % in the string voltage and power calculation, respectively.

13.
Sensors (Basel) ; 22(5)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35271160

RESUMEN

Multibody models built in commercial software packages, e.g., ADAMS, can be used for accurate vehicle dynamics, but computational efficiency and numerical stability are very challenging in complex driving environments. These issues can be addressed by using data-driven models, owing to their robust generalization and computational speed. In this study, we develop a deep neural network (DNN) based model to predict longitudinal-lateral dynamics of an autonomous vehicle. Dynamic simulations of the autonomous vehicle are performed based on a semirecursive multibody method for data acquisition. The data are used to train and test the DNN model. The DNN inputs include the torque applied on wheels and the vehicle's initial speed that imitates a double lane change maneuver. The DNN outputs include the longitudinal driving distance, the lateral driving distance, the final longitudinal velocities, the final lateral velocities, and the yaw angle. The predicted vehicle states based on the DNN model are compared with the multibody model results. The accuracy of the DNN model is investigated in detail in terms of error functions. The DNN model is verified within the framework of a commercial software package CarSim. The results demonstrate that the DNN model predicts accurate vehicle states in real time. It can be used for real-time simulation and preview control in autonomous vehicles for enhanced transportation safety.

14.
Comput Methods Programs Biomed ; 216: 106659, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35108626

RESUMEN

BACKGROUND AND OBJECTIVE: Fast, accurate, and stable simulation of soft tissue deformation is a challenging task. Mass-Spring Model (MSM) is one of the popular methods used for this purpose for its simple implementation and potential to provide fast dynamic simulations. However, accurately simulating a non-linear material within the mass-spring framework is still challenging. The objective of the present study is to develop and evaluate a new efficient hyperelastic Mass-Spring Model formulation to simulate the Neo-Hookean deformable material, called HyperMSM. METHODS: Our novel HyperMSM formulation is applicable for both tetrahedral and hexahedral mesh configurations and is compatible with the original projective dynamics solver. In particular, the proposed MSM variant includes springs with variable rest-lengths and a volume conservation constraint. Two applications (transtibial residual limb and the skeletal muscle) were conducted. RESULTS: Compared to finite element simulations, obtained results show RMSE ranges of [2.8%-5.2%] and [0.46%-5.4%] for stress-strain and volumetric responses respectively for strains ranging from -50% to +100%. The displacement error range in our transtibial residual limb simulation is around [0.01mm-0.7 mm]. The RMSE range of relative nodal displacements for the skeletal psoas muscle model is [0.4%-1.7%]. CONCLUSIONS: Our novel HyperMSM formulation allows hyperelastic behavior of soft tissues to be described accurately and efficiently within the mass-spring framework. As perspectives, our formulation will be enhanced with electric behavior toward a multi-physical soft tissue mass-spring modeling framework. Then, the coupling with an augmented reality environment will be performed.


Asunto(s)
Algoritmos , Simulación por Computador , Traumatismos de los Tejidos Blandos , Análisis de Elementos Finitos , Humanos , Modelos Biológicos , Estrés Mecánico
15.
Curr Pharm Teach Learn ; 14(1): 33-37, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35125192

RESUMEN

INTRODUCTION: To determine the impact of emergent transition from in-person to remote learning on student performance within real-time objective structured clinical examinations (OSCEs). METHODS: A university mandate, due to severe SARS-CoV-2, was issued requiring didactic courses to transition to remote learning in spring 2020. The third-year internal medicine elective had six remaining weekly OSCEs, accounting for 55% of course grades. Full credit was awarded for the first OSCE as students familiarized themselves with the new virtual format. The primary outcome was the overall average OSCE performance for the course's remaining five virtual simulations compared to the traditional in-person offering in 2019. Secondary outcomes included individual OSCE performance, OSCE performance with inclusion of the first OSCE, and overall course grades. RESULTS: There were no statistically significant differences in overall average OSCE performance between 2019 and 2020 cohorts for the five simulations (82.7% vs. 86.8%, P = .20). Secondary outcomes showed statistically significant differences favoring performance in the 2020 cohort for infectious diseases (78.3% vs. 89.4%, P < .001) and anticoagulation (74.4% vs. 90%, P = .002), while cardiology favored the 2019 cohort (91.1% vs. 82.8%, P = .03). There was no statistically significant difference in performance on the cumulative I (86.1% vs. 82.2%, P = .41) or cumulative II (83.3% vs. 89.4%, P = .29) simulations or in final overall course grades (86.6% vs. 90.2%, P = .06). CONCLUSIONS: An emergent transition to remote learning may not negatively impact student performance on real-time OSCE activities.


Asunto(s)
COVID-19 , Evaluación Educacional , Competencia Clínica , Humanos , SARS-CoV-2 , Estudiantes
16.
Comput Struct Biotechnol J ; 19: 5856-5863, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765100

RESUMEN

The cell cultivation process in a bioreactor is a high-value manufacturing process that requires excessive monitoring and control compatibility. The specific cell growth rate is a crucial parameter that describes the online quality of the cultivation process. Most methods and algorithms developed for online estimations of the specific growth rate controls in batch and fed-batch microbial cultivation processes rely on biomass growth models. In this paper, we present a soft sensor - a specific growth rate estimator that does not require a particular bioprocess model. The approach for online estimation of the specific growth rate is based on an online measurement of the oxygen uptake rate. The feasibility of the estimator developed in this study was determined in two ways. First, we used numerical simulations on a virtual platform, where the cell culture processes were theoretically modeled. Next, we performed experimental validation based on laboratory-scale (7, 12, 15 L) bioreactor experiments with three different Escherichia coli BL21 cell strains.

17.
Front Robot AI ; 8: 706646, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568437

RESUMEN

One of the key distinguishing aspects of underwater manipulation tasks is the perception challenges of the ocean environment, including turbidity, backscatter, and lighting effects. Consequently, underwater perception often relies on sonar-based measurements to estimate the vehicle's state and surroundings, either standalone or in concert with other sensing modalities, to support the perception necessary to plan and control manipulation tasks. Simulation of the multibeam echosounder, while not a substitute for in-water testing, is a critical capability for developing manipulation strategies in the complex and variable ocean environment. Although several approaches exist in the literature to simulate synthetic sonar images, the methods in the robotics community typically use image processing and video rendering software to comply with real-time execution requirements. In addition to a lack of physics-based interaction model between sound and the scene of interest, several basic properties are absent in these rendered sonar images-notably the coherent imaging system and coherent speckle that cause distortion of the object geometry in the sonar image. To address this deficiency, we present a physics-based multibeam echosounder simulation method to capture these fundamental aspects of sonar perception. A point-based scattering model is implemented to calculate the acoustic interaction between the target and the environment. This is a simplified representation of target scattering but can produce realistic coherent image speckle and the correct point spread function. The results demonstrate that this multibeam echosounder simulator generates qualitatively realistic images with high efficiency to provide the sonar image and the physical time series signal data. This synthetic sonar data is a key enabler for developing, testing, and evaluating autonomous underwater manipulation strategies that use sonar as a component of perception.

18.
Front Cell Neurosci ; 15: 623552, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897369

RESUMEN

Large-scale simulation of detailed computational models of neuronal microcircuits plays a prominent role in reproducing and predicting the dynamics of the microcircuits. To reconstruct a microcircuit, one must choose neuron and synapse models, placements, connectivity, and numerical simulation methods according to anatomical and physiological constraints. For reconstruction and refinement, it is useful to be able to replace one module easily while leaving the others as they are. One way to achieve this is via a scaffolding approach, in which a simulation code is built on independent modules for placements, connections, and network simulations. Owing to the modularity of functions, this approach enables researchers to improve the performance of the entire simulation by simply replacing a problematic module with an improved one. Casali et al. (2019) developed a spiking network model of the cerebellar microcircuit using this approach, and while it reproduces electrophysiological properties of cerebellar neurons, it takes too much computational time. Here, we followed this scaffolding approach and replaced the simulation module with an accelerated version on graphics processing units (GPUs). Our cerebellar scaffold model ran roughly 100 times faster than the original version. In fact, our model is able to run faster than real time, with good weak and strong scaling properties. To demonstrate an application of real-time simulation, we implemented synaptic plasticity mechanisms at parallel fiber-Purkinje cell synapses, and carried out simulation of behavioral experiments known as gain adaptation of optokinetic response. We confirmed that the computer simulation reproduced experimental findings while being completed in real time. Actually, a computer simulation for 2 s of the biological time completed within 750 ms. These results suggest that the scaffolding approach is a promising concept for gradual development and refactoring of simulation codes for large-scale elaborate microcircuits. Moreover, a real-time version of the cerebellar scaffold model, which is enabled by parallel computing technology owing to GPUs, may be useful for large-scale simulations and engineering applications that require real-time signal processing and motor control.

19.
Comput Methods Programs Biomed ; 198: 105786, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33059060

RESUMEN

BACKGROUND AND OBJECTIVES: This paper presents the results of a Machine-Learning based Model Order Reduction (MOR) method applied to a complex 3D Finite Element (FE) biomechanical model of the human tongue, in order to create a Digital Twin Model (DTM) that enables real-time simulations. The DTM is designed for future inclusion in a computer assisted protocol for tongue surgery planning. METHODS: The proposed method uses an "a posteriori" MOR that allows, from a limited number of simulations with the FE model, to predict in real time mechanical responses of the human tongue to muscle activations. RESULTS: The MOR method is evaluated for simulations associated with separate single tongue muscle activations. It is shown to be able to account with a sub-millimetric spatial accuracy for the non-linear dynamical behavior of the tongue model observed in these simulations. CONCLUSION: Further evaluations of the MOR method will include tongue movements induced by multiple muscle activations. At this stage our MOR method offers promising perspectives for the use of the tongue model in a clinical context to predict the impact of tongue surgery on tongue mobility. As a long term application, this DTM of the tongue could be used to predict the functional consequences of the surgery in terms of speech production and swallowing.


Asunto(s)
Habla , Lengua , Fenómenos Biomecánicos , Simulación por Computador , Humanos , Aprendizaje Automático , Músculos , Dinámicas no Lineales
20.
J Biomech ; 114: 110157, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33307356

RESUMEN

The objective of this research work was to develop a model of human skeleton with the capability of real-time simulation of the physical movements of a person in front of the motion capture hardware (Kinect) in order to analyze the motion data and measure the changes of joint torques. Mevea simulation software has been utilized for this purpose, which is a novel application of this software in the field of biomechanics. The model of the human skeleton was created in Mevea using the graphics built in 3ds Max. Simulink external interface for Mevea was established. Simulink acts as a connection between the Mevea software and Kinect for controlling the model. The developed model has been tested through three case studies involving the elbow joint, thoracic joint, and full body. Changes in torque and angular position of joints based on the input of joints are presented as graphs. The developed real-time model of the human skeleton in Mevea can execute the real-time simulation of a person's movements in front of a motion capture camera and provide the changes of torques, which are dependent on the angular positions of the body joints. This work provides the possibility to use the developed real-time model for physiotherapeutic rehabilitation to identify problematic muscles based on produced torque of the joints in order to specify the therapeutic options. The future research direction would be creating a reference databank by measuring healthy individuals' muscle forces for comparison purposes.


Asunto(s)
Articulaciones , Movimiento , Fenómenos Biomecánicos , Humanos , Músculos , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA