Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 460: 132370, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37666173

RESUMEN

Heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs) are of increasing concern and their environmental and human health impacts should be assessed due to their widespread presence and potential persistence in the environment. This study investigated the ultimate and primary biodegradability of ten heterocyclic PAHs, nine of which were found to be non-readily biodegradable. To generate a microbial community capable of degrading such compounds, a bacterial inoculum isolated from the effluent of a wastewater treatment plant (WWTP) was adapted to a mixture of heterocyclic PAHs for one year. Throughout the adaptation process, bacterial samples were collected at different stages to conduct primary biodegradation, ultimate biodegradation, and inoculum toxicity tests. Interestingly, after one year of adaptation, the community developed the ability to mineralize carbazole, but in the same time showed an increasing sensitivity to the toxic effects of benzo[c]carbazole. In two consecutive primary biodegradation experiments, degradation of four heterocycles was observed, while no biodegradation was detected for five compounds in any of the tests. Furthermore, the findings of this work were compared with predictions from in silico models regarding biodegradation timeframe and sorption, and it was found that the models were partially successful in describing these processes. The results of study provide valuable insights into the persistence of a representative group of heterocyclic PAHs in aquatic environments, which contributes to the hazard assessment of this particular class of substances.


Asunto(s)
Hidrocarburos Aromáticos , Microbiota , Hidrocarburos Policíclicos Aromáticos , Humanos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Biodegradación Ambiental , Carbazoles
2.
J Pestic Sci ; 48(2): 35-46, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37361484

RESUMEN

Ready biodegradability tests conducted in accordance with the Organisation for Economic Co-operation and Development guidelines (test 301C or test 301F) are performed using activated sludge (AS) prepared by the Chemicals Evaluation and Research Institute (AS-CERI) or that taken from a sewage treatment plant (AS-STP). It had been reported that AS-CERI had lower activity than AS-STP in biodegrading test chemicals, and that biodegradation was accelerated by increasing the volume of the test medium. However, these phenomena have not been clarified from the perspective of the microbiota. In this study, using metagenomic analysis, we first showed that the microbiota of AS-CERI was biased in its distribution of phyla, less diverse, and had greater lot-to-lot variability than that of AS-STP. Second, after cultivation for a long period of time, the microbiota of AS-STP and AS-CERI became more similar to each other in terms of community structure. Third, determining degraders of test substances when each substance was actively biodegraded was found to be an effective approach. Finally, we clarified experimentally that a large volume of test medium increased the number of species that could degrade test substances in the condition where the initial concentrations of each substance and AS-STP were kept constant.

3.
Sci Total Environ ; 833: 155134, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35405244

RESUMEN

In persistence assessment enhanced ready biodegradation tests (eRBT) are aimed to close the gap between screening tests and complex simulation tests. However, only few data from these tests are available and neither guidance on the design and interpretation of eRBTs, nor suitable validity criteria have been established so far. In a practical testing programme 5 compounds with controversial degradation data have been tested in 4 test series including prolongation to 60 days and use of different inocula (activated sludge, final effluent from a STP), flask sizes, and endpoints (CO2, O2, DOC). The drug ibuprofen and the intermediate 4-fluorophenol were biodegraded by >60% within 28 days within a 10-day-window and therefore are considered as readily biodegradable and in conclusion fulfilling the criteria for "not persistent". The mean mineralization of the pesticide synergist piperonylbutoxide and the antioxidant octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate achieved 20%-50% (="potentially P"). The mineralization of the cosmetic ingredient cis-13-docosenonamide (Erucamide) was between 36%-64% after 60 days with activated sludge and 21% with the effluent from the STP. Diethylene glycol reached the pass level of 60% mineralization within 28 days in all test series without always meeting the 10-day window, and thus proved to be a suitable reference substance for eRBTs. Based on the results of the study several recommendations for the test design, the evaluation and the interpretation of eRBTs are made. However, a broader data set is required and further enhancements such as the quality and amount of the inoculum should also be considered in future research.


Asunto(s)
Aguas del Alcantarillado , Biodegradación Ambiental
4.
Chemosphere ; 299: 134385, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35337825

RESUMEN

Ionic liquids (ILs) are increasingly of interest for environmentally open applications. Therefore, completely mineralising ILs are highly desirable. We reviewed the current state of knowledge on ILs' environmental biodegradability and identified research needs. Literature data were evaluated as for applied standard methods (e.g. OECD, ISO, APHA) for biodegradation of ILs in order to get an overview on the validity of the test results received and ILs' biodegradability. 109 studies were evaluated. The ILs were categorised based on the cation's core structure. The biodegradation data was classified according to a traffic light system (red: 0-19% degradation, amber: 20-59% degradation, green: ≥ 60% degradation). Not all studies could be assessed for compliance with the test guidelines due to missing test parameters. Moreover, no study discussed all validation criteria as defined by the test guidelines. Consequently, the reliability and quality of the existing biodegradation data is restrained. With regard to the different cations classified for ≥ 60% biodegradability, phosphonium ILs are the least biodegradable, followed by imidazolium ones. The most ILs that were biodegradable are cholinium ILs. The results indicate the need for more and qualitatively better testing according to standard methods including application and reporting of all validation criteria in order to get reliable data that enables the comparison of the test data and a comprehensive understanding of ILs' biodegradability. Moreover, reliable data allows the selection of sufficiently environmentally biodegradable ILs if an introduction into the environment during use cannot be excluded.


Asunto(s)
Líquidos Iónicos , Biodegradación Ambiental , Cationes , Líquidos Iónicos/química , Reproducibilidad de los Resultados
5.
Artículo en Inglés | MEDLINE | ID: mdl-32657211

RESUMEN

Standard ready biodegradability tests are conducted at unrealistically high test concentration and therefore cannot properly evaluate toxic substances to microorganisms. The present study evaluated the effects of four adsorbent carriers in modified ready biodegradability tests of four quaternary ammonium salts (QASs) demonstrating microbial toxicity according to the Organization for Economic Co-operation and Development Test Guideline 301F and cautions for using carriers were found. In the tests with silica gel, the concentration of all QASs in the test solutions decreased due to adsorption. The percentages of biodegradation of octadecyltrimethylammonium chloride, hexadecyltrimethylammonium bromide, and benzyldimethyloctadecylammonium chloride, which have a linear alkyl chain, were 89.9%, 80.6%, and 70.1% on day 28, respectively; benzethonium chloride, with a branched alkyl chain, did not undergo biodegradation. In the tests with activated carbon, although the concentrations of QASs greatly decreased, no QASs underwent biodegradation. In the tests with sea sand or quartz sand, QASs were not adsorbed on the carriers and were not biodegraded. Using an adsorbent carrier for toxic substances will increase biodegradation, but it has no effect on highly persistent substances with specific chemical structures, e.g., branched carbons, which is very important because ready biodegradability is not overestimated. Carriers having moderate adsorbability should be selected.


Asunto(s)
Carbón Orgánico/química , Contaminantes Ambientales/toxicidad , Compuestos de Amonio Cuaternario/toxicidad , Arena/química , Dióxido de Silicio/química , Adsorción , Biodegradación Ambiental , Contaminantes Ambientales/análisis , Microbiota/efectos de los fármacos , Compuestos de Amonio Cuaternario/análisis , Sales (Química) , Aguas del Alcantarillado/microbiología
6.
Chemosphere ; 241: 125071, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31683420

RESUMEN

The ready biodegradability of twenty food additives, belonging to the classes of artificial sweeteners, natural sweeteners, preservatives and colorings, was investigated using activated sludge as inoculum and OECD 301F respirometric test. According to the results, saccharin, aspartame, sodium cyclamate, xylitol, erythritol, maltitol, potassium sorbate, benzoic acid and sodium ascorbate are characterized as readily biodegradable compounds, partial biodegradation (<60% during the test) was noticed for steviol, inulin, alitame, curcumin, ponceau 4R and tartrazine, while no biodegradation was observed for the other five compounds. The duration of lag phase before the start of biodegradation varied between the target compounds, while their ultimate biodegradation half-life values ranged between 0.7 ±â€¯0.1 days (benzoic acid) and 24.6 ±â€¯1.0 days (curcumin). The expected removal of target compounds due to ultimate biodegradation mechanism was estimated for a biological wastewater treatment system operated at a retention time of one day and percentages higher than 40% were calculated for sodium cyclamate, potassium sorbate and benzoic acid. Higher removal percentages are expected in full-scale Sewage Treatment Plants (STPs) due to the contribution of other mechanisms such as sorption to suspended solids, (bio)transformation and co-metabolic phenomena. Further biodegradation experiments should be conducted under different experimental conditions for the food additives that did not fulfill the requirements of the applied protocol. Future studies should also focus on the occurrence and fate of food colorants and natural sweeteners in full-scale STPs.


Asunto(s)
Biodegradación Ambiental , Aditivos Alimentarios , Ácido Benzoico , Organización para la Cooperación y el Desarrollo Económico , Aguas del Alcantarillado , Edulcorantes , Aguas Residuales
7.
Chemosphere ; 245: 125643, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31877460

RESUMEN

The cationic surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) can exert inhibitory effects on micro-organisms responsible for their biodegradation. However, under environmentally relevant exposure scenarios the presence of and sorption to organic and inorganic matter can lead to significant reduction of inhibitory effects. In our studies we investigated silica gel and seven clays as inert sorbents to mitigate these inhibitory effects in a 28 day manometric respirometry biodegradation test. CTAB was not inhibitory to the used inoculum, but we did observe that seven out of eight sorbents increased maximum attainable biodegradation, and four out of eight decreased the lag phase. The strongly inhibitory effect of CPC was successfully mitigated by most sorbents, with five out of eight allowing >50% biodegradation within 28 days. Results further indicate that bioaccessibility of the sorbed fractions in the stirred manometric test systems was higher than in calmly shaken headspace test systems. Bioaccessibility might also be limited depending on characteristics of test chemical and sorbent type, with montmorillonite and bentonite apparently providing the lowest level of bioaccessibility with CPC. Clay sorbents can thus be used as environmentally relevant sorbents to mitigate potential inhibitory effects of test chemicals, but factors that impede bioaccessibility should be considered. In addition to apparently increased bioaccessibility due to stirring, the automated manometric respirometry test systems give valuable and highly cost-effective insights into lag phase and biodegradation kinetics; information that is especially relevant for test chemicals of gradual biodegradability.


Asunto(s)
Biodegradación Ambiental , Arcilla/química , Desinfectantes/química , Adsorción , Silicatos de Aluminio/química , Bentonita/química , Cationes , Cetilpiridinio , Tensoactivos/química
8.
SAR QSAR Environ Res ; 31(3): 171-186, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31858821

RESUMEN

The European Registration, Evaluation, Authorization and Restriction of Chemical Substances Regulation, requires marketed chemicals to be evaluated for Ready Biodegradability (RB), considering in silico prediction as valid alternative to experimental testing. However, currently available models may not be relevant to predict compounds of industrial interest, due to accuracy and applicability domain restriction issues. In this work, we present a new and extended RB dataset (2830 compounds), issued by the merging of several public data sources. It was used to train classification models, which were externally validated and benchmarked against already-existing tools on a set of 316 compounds coming from the industrial context. New models showed good performances in terms of predictive power (Balance Accuracy (BA) = 0.74-0.79) and data coverage (83-91%). The Generative Topographic Mapping approach identified several chemotypes and structural motifs unique to the industrial dataset, highlighting for which chemical classes currently available models may have less reliable predictions. Finally, public and industrial data were merged into global dataset containing 3146 compounds. This is the biggest dataset reported in the literature so far, covering some chemotypes absent in the public data. Thus, predictive model developed on the Global dataset has larger applicability domain than the existing ones.


Asunto(s)
Bases de Datos de Compuestos Químicos , Contaminantes Ambientales/química , Modelos Químicos , Algoritmos , Benchmarking , Biodegradación Ambiental , Simulación por Computador , Bases de Datos de Compuestos Químicos/normas , Relación Estructura-Actividad Cuantitativa , Reproducibilidad de los Resultados
9.
Ecotoxicol Environ Saf ; 182: 109417, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31302333

RESUMEN

Biodegradability studies for the cationic surfactant cetylpyridinium chloride (CPC) are hampered by inhibitory effects on inoculum at prescribed test concentrations (10-20 mg organic carbon/L). In this study, we used 14C labeled CPC in the 28 d Headspace Test (OECD 310) and demonstrated that CPC was readily biodegradable (10->60% mineralization within a 10 day window) at test concentrations 0.006-0.3 mg/L with CPC as single substrate. Biodegradation efficiency was comparable over this concentration range. CPC inhibited degradation at 1 mg/L and completely suppressed inoculum activity at 3 mg/L. In an extensive sorbent modified biodegradation study we evaluated the balance between CPC bioaccessibility and toxicity. A non-inhibitory concentration of 0.1 mg/L CPC was readily biodegradable with 83% sorbed to SiO2, while biodegradation was slower when 96% was sorbed. SiO2 mitigated inhibitory effects of 1 mg/L CPC, reaching >60% biodegradation within 28 d; inhibitory effects were also mitigated by addition of commercial clay powder (illite) but this was primarily reflected by a reduced lag phase. At 10 mg/L CPC SiO2 was still able to mitigate inhibitory effects, but bioaccessibility seemed limited as only 20% biodegradation was reached. Illite limited bioaccessibility more strongly and was not able to sustain biodegradation at 10 mg/L CPC.


Asunto(s)
Antiinfecciosos Locales/metabolismo , Biodegradación Ambiental , Cetilpiridinio/metabolismo , Minerales , Dióxido de Silicio , Tensoactivos
10.
Chemosphere ; 222: 461-468, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30716549

RESUMEN

Biodegradation potential of cationic surfactants may be hampered by inhibition of inoculum at concentrations required to accurately measure inorganic carbon. At >0.3 mg/L cetyltrimethylammonium bromide (CTAB) negatively impacted degradation of the reference compound aniline. We used silicon dioxide (SiO2) and illite as inorganic sorbents to mitigate toxicity of CTAB by lowering freely dissolved concentrations. In an OECD Headspace Test we tested whether 16.8 mg/L CTAB was readily biodegradable in presence of two concentrations of SiO2 and illite. SiO2 adsorbed 85% and 98% CTAB, resulting in concentrations of 2.5 and 0.34 mg/L, mineralized to CO2 >60% within 16 and 23 d, respectively. With 89% and 99% sorbed to illite, 60% mineralization was reached within 9 and 23 d, respectively. However, higher sorbent concentrations increased time needed to reach >60% mineralization. Thus, desorption kinetics likely decreased bioaccessibility. It is therefore essential to determine appropriate concentrations of mitigating sorbents to render a Headspace Test based on carbon analysis suitable to determine ready biodegradability of compounds which might inhibit inoculum. This would avoid use of expensive radiolabeled compounds. However, high sorbent concentrations can reduce bioaccessibility and limit degradation kinetics, particularly for relatively toxic substances that require strong mitigation.


Asunto(s)
Cetrimonio/farmacocinética , Tensoactivos/farmacocinética , Adsorción , Compuestos de Anilina/farmacocinética , Biodegradación Ambiental , Disponibilidad Biológica , Radioisótopos de Carbono/análisis , Cationes , Cetrimonio/toxicidad , Contaminantes Ambientales/farmacocinética , Contaminantes Ambientales/toxicidad , Cinética , Minerales/química , Dióxido de Silicio/química
11.
Artículo en Inglés | MEDLINE | ID: mdl-29936562

RESUMEN

Methylene-4,4'-dianiline (MDA, CAS-No. 101-77-9) is a high production volume intermediate that is mainly processed to diisocyanates and finally polyurethanes. This review summarizes available data concerning the environmental behavior. When released into the environment, MDA distributes into water and subsequently sediment and soil compartments; the air is of little relevance, owed to the low vapor pressure and short atmospheric half-life, which renders MDA non-critical for long-range transport. Biodegradation data present a diverged picture; in some tests, MDA is not readily biodegradable or even not inherent biodegradable; in other tests, MDA turned out to be readily biodegradable (but failing the 10-d window). The history and composition of the inoculum used for testing seem to play an important role, which is underlined by good test results with adapted inoculum. In soil, initially a rapid mineralization is observed, which slows down within the first days due to competitive chemical absorption. The latter results in degradation rates comparable to that of natural organic matter. Under anaerobic conditions, mineralization is poor. Irreversible chemisorption occurs unless soils/sediments are highly reduced. Half-lives due to primary decay do not indicate MDA to be persistent according to the regulatory guidance used in then EU, Canada, or the USA; in Japan, however, due to test results in MITI degradation tests, MDA would be regarded as persistent. The identification of microbial MDA metabolites deserves further research. MDA is not bioaccumulative, but it is toxic to aquatic organisms and mammals. MDA in pore water of soils is rapidly adsorbed on the surface of plant roots. Test runs were too short to draw a final conclusion with regards to transport to stem, leaves, and fruits. Data from structurally similar compounds indicate that such transport would account for less than 1% of the root-adsorbed material.

12.
Environ Sci Pollut Res Int ; 25(19): 18393-18411, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29667058

RESUMEN

Mercaptocarboxylic acids and their esters, a class of difunctional compounds bearing both a mercapto and a carboxylic acid or ester functional group, are industrial chemicals of potential environmental concern. Biodegradation of such compounds was systematically investigated here, both by literature search and by experiments (Closed Bottle Test OECD 301D and Manometric Respirometry Test OECD 301F). These compounds were found either readily biodegradable or at least biodegradable to a significant extent. Some related compounds of divalent sulfur were tested for comparison (mercaptans, sulfides, disulfides). For the two relevant monofunctional compound classes, carboxylic acids/esters and mercaptans, literature data were compiled, and by comparison with structurally similar compounds without these functional groups, the influence of COOH/COOR' and SH groups on biodegradability was evaluated. Thereby, an existing rule of thumb for biodegradation of carboxylic acids/esters was supported by experimental data, and a rule of thumb could be formulated for mercaptans. Concurrent to biodegradation, abiotic processes were observed in the experiments, rapid oxidative formation of disulfides (dimerisation of monomercaptans and cyclisation of dimercaptans) and hydrolysis of esters. Some problems that compromise the reproducibility of biodegradation test results were discussed.


Asunto(s)
Ácidos Carboxílicos/análisis , Disulfuros/análisis , Modelos Teóricos , Compuestos de Sulfhidrilo/análisis , Contaminantes Químicos del Agua/análisis , Aerobiosis , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Ácidos Carboxílicos/química , Disulfuros/química , Ésteres , Oxidación-Reducción , Reproducibilidad de los Resultados , Compuestos de Sulfhidrilo/química , Contaminantes Químicos del Agua/química
13.
Sci Total Environ ; 618: 697-711, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29055596

RESUMEN

The lack of studies on the fate and effects of drug metabolites in the environment is of concern. As their parent compounds, metabolites enter the aquatic environment and are subject to biotic and abiotic process. In this regard, photolysis plays an important role. This study combined experimental and in silico quantitative structure-activity relationship (QSAR) methods to assess the fate and effects of Mesoridazine (MESO), a pharmacologically active human drug and metabolite of the antipsychotic agent Thioridazine, and its transformation products (TPs) formed through a Xenon lamp irradiation. After 256min, the photodegradation of MESO⋅besylate (50mgL-1) achieved 90.4% and 6.9% of primary elimination and mineralization, respectively. The photon flux emitted by the lamp (200-600nm) was 169.55Jcm-2. Sixteen TPs were detected by means of liquid chromatography-high resolution mass spectrometry (LC-HRMS), and the structures were proposed based on MSn fragmentation patterns. The main transformation reactions were sulfoxidation, hydroxylation, dehydrogenation, and sulfoxide elimination. A back-transformation of MESO to Thioridazine was evidenced. Aerobic biodegradation tests (OECD 301 D and 301F) were applied to MESO and the mixture of TPs present after 256min of photolysis. Most of TPs were not biodegraded, demonstrating their tendency to persist in aquatic environments. The ecotoxicity towards Vibrio fischeri showed a decrease in toxicity during the photolysis process. The in silico QSAR tools QSARINS and US-EPA PBT profiler were applied for the screening of TPs with character of persistence, bioaccumulation, and toxicity (PBT). They have revealed the carbazole derivatives TP 355 and TP 337 as PBT/vPvB (very persistent and very bioaccumulative) compounds. In silico QSAR predictions for mutagenicity and genotoxicity provided by CASE Ultra and Leadscope® indicated positive alerts for mutagenicity on TP 355 and TP 337. Further studies regarding the carbazole derivative TPs should be considered to confirm their hazardous character.


Asunto(s)
Antipsicóticos/metabolismo , Mesoridazina/metabolismo , Fotólisis , Contaminantes Químicos del Agua/metabolismo , Aliivibrio fischeri , Biodegradación Ambiental , Tioridazina/metabolismo , Pruebas de Toxicidad
14.
SAR QSAR Environ Res ; 28(4): 311-323, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28480742

RESUMEN

The biodegradation of N-alkyl polypropylene polyamines (NAPPs) was studied using pure and mixed cultures to enable read-across of ready biodegradability test results. Two Pseudomonas spp. were isolated from activated sludge with N-oleyl alkyl propylene diamine and N-coco alkyl dipropylene triamine, respectively. Both strains utilized all NAPPs tested as the sole source of carbon, nitrogen and energy for growth. Mineralization of NAPPs was independent of the alkyl chain length and the size of the polyamine moiety. NAPPs degraded in closed bottle tests (CBTs) using both river water and activated sludge. However, ready biodegradability of NAPPs with alkyl chain lengths of 16-18 carbon atoms and polyamine moieties with three and four nitrogen atoms could not be demonstrated. Biodegradation in the CBT was hampered by their limited bioavailability, making assessment of the true ready biodegradability of these highly adsorptive surfactants impossible. All NAPPs are therefore classified as readily biodegradable through read-across. Read-across is justified by the broad substrate specificity of NAPP-degrading microorganisms, their omnipresence and the mineralization of NAPPs.


Asunto(s)
Poliaminas/metabolismo , Polipropilenos/metabolismo , Pseudomonas/metabolismo , Tensoactivos/metabolismo , Biodegradación Ambiental , Agua Dulce/microbiología , Poliaminas/química , Polipropilenos/química , Aguas del Alcantarillado/microbiología , Tensoactivos/química
15.
Sci Total Environ ; 583: 36-52, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28126283

RESUMEN

Pharmaceuticals do not occur isolated in the environment but in multi-component mixtures and may exhibit antagonist, synergistic or additive behavior. Knowledge on this is still scarce. The situation is even more complicated if effluents or potable water is treated by oxidative processes or such transformations occur in the environment. Thus, determining the fate and effects of parent compounds, metabolites and transformation products (TPs) formed by transformation and degradation processes in the environment is needed. This study investigated the fate and preliminary ecotoxicity of the phenothiazine pharmaceuticals, Promazine (PRO), Promethazine (PRM), Chlorpromazine (CPR), and Thioridazine (THI) as single and as components of the resulting mixtures obtained from their treatment by Fenton process. The Fenton process was carried out at pH7 and by using 0.5-2mgL-1 of [Fe2+]0 and 1-12.5mgL-1 of [H2O2]0 at the fixed ratio [Fe2+]0:[H2O2]0 of 1:10 (w:w). No complete mineralization was achieved. Constitutional isomers and some metabolite-like TPs formed were suggested based on their UHPLC-HRMSn data. A degradation pathway was proposed considering interconnected mechanisms such as sulfoxidation, hydroxylation, N-dealkylation, and dechlorination steps. Aerobic biodegradation tests (OECD 301 D and OECD 301 F) were applied to the parent compounds separately, to the mixture of parent compounds, and for the cocktail of TPs present after the treatment by Fenton process. The samples were not readily biodegradable. However, LC-MS analysis revealed that abiotic transformations, such hydrolysis, and autocatalytic transformations occurred. The initial ecotoxicity tested towards Vibrio fischeri as individual compounds featured a reduction in toxicity of PRM and CPR by the treatment process, whereas PRO showed an increase in acute luminescence inhibition and THI a stable luminescence inhibition. Concerning effects of the mixture components, reduction in toxicity by the Fenton process was predicted by concentration addition and independent action models.


Asunto(s)
Fenotiazinas/análisis , Contaminantes Químicos del Agua/análisis , Peróxido de Hidrógeno , Hierro , Fenotiazinas/metabolismo , Fenotiazinas/toxicidad , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
16.
Environ Sci Pollut Res Int ; 23(17): 17592-602, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27234835

RESUMEN

Difficulties encountered in estimating the biodegradation of poorly water-soluble substances are often linked to their limited bioavailability to microorganisms. Many original bioavailability improvement methods (BIMs) have been described, but no global approach was proposed for a standardized comparison of these. The latter would be a valuable tool as part of a wider strategy for evaluating poorly water-soluble substances. The purpose of this study was to define an evaluation strategy following the assessment of different BIMs adapted to poorly water-soluble substances with ready biodegradability tests. The study was performed with two poorly water-soluble chemicals-a solid, anthraquinone, and a liquid, isodecyl neopentanoate-and five BIMs were compared to the direct addition method (reference method), i.e., (i) ultrasonic dispersion, (ii) adsorption onto silica gel, (iii) dispersion using an emulsifier, (iv) dispersion with silicone oil, and (v) dispersion with emulsifier and silicone oil. A two-phase evaluation strategy of solid and liquid chemicals was developed involving the selection of the most relevant BIMs for enhancing the biodegradability of tested substances. A description is given of a BIM classification ratio (R BIM), which enables a comparison to be made between the different test chemical sample preparation methods used in the various tests. Thereby, using this comparison, the BIMs giving rise to the greatest biodegradability were ultrasonic dispersion and dispersion with silicone oil or with silicone oil and emulsifier for the tested solid chemical, adsorption onto silica gel, and ultrasonic dispersion for the liquid one.


Asunto(s)
Agua/metabolismo , Biodegradación Ambiental , Disponibilidad Biológica , Solubilidad , Agua/química
17.
Environ Toxicol Chem ; 35(1): 84-90, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26211908

RESUMEN

In Japan, understanding the environmental persistence of chemicals is very important for risk assessment, and ready biodegradability tests are mainly conducted according to the Organisation for Economic Co-operation and Development test guideline 301C. However, the highest test concentration specified in test guideline 301C, 100 mg/L, may cause microbial toxicity and incomplete biodegradation. The authors performed test guideline 301C tests at test concentrations of 30 mg/L for 13 substances that were readily biodegradable in ready biodegradability tests but not in test guideline 301C tests. Of the 5 substances with potential to cause microbial toxicity at 100 mg/L, the percentage of biodegradation of sodium dimethyldithiocarbamate, 4-chloro-3-cresol (CC), thymol (THY), and p-tert-butyl-α-methylbenzenepropionaldehyde measured by biochemical oxygen demand (BOD) increased in the test guideline 301C test at 30 mg/L, suggesting a reduction in toxicity effects. Furthermore, CC and THY met the criteria for ready biodegradability, which are more than 60% of biodegradation by BOD and a 10-d window. Of the 8 substances with a low potential for causing microbial toxicity at 100 mg/L, the percentage of biodegradation of only 2-(diethylamino)ethanol increased in the test guideline 301C test at 30 mg/L. Employing a lower test concentration in the standard test guideline 301C test will contribute to improvement of consistency between results of a test guideline 301C test and other ready biodegradability tests.


Asunto(s)
Biodegradación Ambiental , Contaminantes Ambientales/química , Contaminantes Ambientales/toxicidad , Análisis de la Demanda Biológica de Oxígeno , Japón , Organización para la Cooperación y el Desarrollo Económico , Aguas del Alcantarillado/análisis
18.
Ecotoxicol Environ Saf ; 111: 123-30, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25450924

RESUMEN

4,4'-Diaminodiphenylmethane (MDA) is a widely used compound in industries. Studies on the biodegradability of MDA are necessary for environmental hazard identification and risk assessment. Previous studies have suggested that MDA was not readily biodegradable. In the present study, three batches of biodegradation tests (OECD 301A, B, D and F tests) were performed on MDA in June, August and December of 2012. MDA was found to be readily biodegradable and produced colored intermediates in the 301A, B and F test systems. MDA biodegradation measurements were consistent among the three batches of tests. Differences in the extent of biodegradation determined in different methods originated from different test conditions and assessment endpoints. The 301D test has stringent test conditions and is usually performed on chemicals that are toxic to microorganisms, so the test results obtained from 301D tests are less meaningful for evaluating the biodegradability of MDA. The low MDA biodegradation measurements in the 301B tests compared to the 301A and F tests were due to the assessment method, which did not account for MDA incorporation into biomass in its calculation of CO2 formation rate. The differences in the biodegradation rates, as measured by the different OECD 301 test systems, could also be related to the structure and properties of the chemical. For test substances that can be assessed by all OECD 301 test methods, the highest biodegradation values may be obtained from the 301A and F test methods. This study provides new information to assess the environmental fate in the risk assessment of MDA.


Asunto(s)
Compuestos de Anilina/metabolismo , Carcinógenos/metabolismo , Biodegradación Ambiental , Biomasa , Organización para la Cooperación y el Desarrollo Económico , Medición de Riesgo
19.
Chemosphere ; 108: 10-6, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24875906

RESUMEN

Regulations such as the European REACH (Registration, Evaluation, Authorization and restriction of Chemicals) often require chemicals to be evaluated for ready biodegradability, to assess the potential risk for environmental and human health. Because not all chemicals can be tested, there is an increasing demand for tools for quick and inexpensive biodegradability screening, such as computer-based (in silico) theoretical models. We developed an in silico model starting from a dataset of 728 chemicals with ready biodegradability data (MITI-test Ministry of International Trade and Industry). We used the novel software SARpy to automatically extract, through a structural fragmentation process, a set of substructures statistically related to ready biodegradability. Then, we analysed these substructures in order to build some general rules. The model consists of a rule-set made up of the combination of the statistically relevant fragments and of the expert-based rules. The model gives good statistical performance with 92%, 82% and 76% accuracy on the training, test and external set respectively. These results are comparable with other in silico models like BIOWIN developed by the United States Environmental Protection Agency (EPA); moreover this new model includes an easily understandable explanation.


Asunto(s)
Simulación por Computador , Contaminantes Ambientales/química , Contaminantes Ambientales/metabolismo , Modelos Biológicos , Programas Informáticos , Biodegradación Ambiental , Bases de Datos de Compuestos Químicos , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa , Medición de Riesgo
20.
Environ Toxicol Chem ; 33(2): 328-33, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24173884

RESUMEN

The Organisation for Economic Co-operatoin and development (OECD) Guidelines for the Testing of Chemicals list 7 types of tests for determining the ready biodegradability of chemical compounds (301A-F and 310). The present study compares the biodegradation performance of test guideline 301C, which is applied in Japan's Chemical Substances Control Law, with the performance of the other 6 ready biodegradability tests (RBTs) listed in the guidelines. Test guideline 301C specifies use of activated sludge precultured with synthetic sewage containing glucose and peptone (301C sludge) as a test inoculum; in the other RBTs, however, activated sludge from wastewater treatment plants (WWTP sludge) is frequently employed. Analysis based on percentage of biodegradation and pass levels revealed that the biodegradation intensity of test guideline 301C is relatively weak compared with the intensities of RBTs using WWTP sludge, and the following chemical compounds are probably not biodegraded under test guideline 301C conditions: phosphorus compounds; secondary, tertiary, and quaternary amines; and branched quaternary carbon compounds. The relatively weak biodegradation intensity of test guideline 301C may be related to the markedly different activities of the 301C and WWTP sludges. These findings will be valuable for evaluating RBT data in relation to Japan's Chemical Substances Control Law.


Asunto(s)
Biodegradación Ambiental , Compuestos Orgánicos/metabolismo , Bacterias/metabolismo , Contaminantes Ambientales/metabolismo , Aguas del Alcantarillado/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA