RESUMEN
BACKGROUND: Hepatorenal syndrome (HRS) is the most prevalent form of acute kidney injury in cirrhotic patients. It is characterized by reduced renal blood flow and represents the most severe complication in cirrhotic patients with advanced disease. Previous research has indicated that antioxidants can delay the onset of a hyperdynamic circulatory state in cirrhosis and improve renal function in HRS patients. Regular omega-3 supplementation has significantly reduced the risk of liver disease. This supplementation could represent an additional therapy for individuals with HRS. AIM: To evaluated the antioxidant effect of omega-3 polyunsaturated fatty acid supplementation on the kidneys of cirrhotic rats. METHODS: Secondary biliary cirrhosis was induced in rats by biliary duct ligation (BDL) for 28 d. We used 24 male Wistar rats divided into the following groups: I (control); II (treated with omega-3, 1 g/kg of body weight); III (BDL treated with omega-3, 1 g/kg of body weight); and IV (BDL without treatment). The animals were killed by overdose of anesthetic; the kidneys were dissected, removed, frozen in liquid nitrogen, and stored in a freezer at -80â for later analysis. We evaluated oxidative stress, nitric oxide (NO) metabolites, DNA damage by the comet assay, cell viability test, and apoptosis in the kidneys. Data were analyzed by one-way analysis of variance, and means were compared using the Tukey test, with P ≤ 0.05. RESULTS: Omega-3 significantly decreased the production of reactive oxygen species (P < 0.001) and lipoperoxidation in the kidneys of cirrhotic rats treated with omega-3 (P < 0.001). The activity of the antioxidant enzymes superoxide dismutase and catalase increased in the BDL+omega-3 group compared to the BDL group (P < 0.01). NO production, DNA damage, and caspase-9 cleavage decreased significantly in the omega-3-treated BDL group. There was an increase in mitochondrial electrochemical potential (P < 0.001) in BDL treated with omega-3 compared to BDL. No changes in the cell survival index in HRS with omega-3 compared to the control group (P > 0.05) were observed. CONCLUSION: The study demonstrates that omega-3 can protect cellular integrity and function by increasing antioxidant enzymes, inhibiting the formation of free radicals, and reducing apoptosis.
RESUMEN
In recent years there has been a decline in the incidence of gastric cancer, however the high mortality rate has remained constant. The present study evaluated the potential effects of the retinoid fenretinide on the viability and migration of two cell lines, AGS and NCI-N87, that represented primary and metastatic intestinal gastric cancer subtypes, respectively. It was determined that a similar2 dose of fenretinide reduced the viability of both the primary and metastatic cell lines. In addition, it was demonstrated that combined treatment with fenretinide and cisplatin may affect the viability of both primary and metastatic gastric cancer cells. Furthermore, a wound healing assay demonstrated an inhibitory effect for fenretinide on cell migration. As part of the characterization of the mechanism of action, the effect of fenretinide on reactive oxygen species production and lipid droplet content was evaluated, with the latter as an indirect means of assessing autophagy. These results support the hypothesis of combining using fenretinide with conventional therapies to improve survival rates in advanced or metastatic gastric cancer.
RESUMEN
The use of glyphosate-based herbicides (GBHs) for agricultural production has increased substantially around the world, as have their residues in the environment. Its effects on the central nervous system and neurotoxicity pathways are still not fully understood. The aim of this study was to evaluate the neurotoxic effect of chronic exposure to a GBH in adult rats. Sixty adult male albino Wistar rats were allocated into 6 groups, 2 control groups, and four GBH exposure groups (n = 10/group). The animals were exposed to two concentrations of GBH, orally and by inhalation: 2.99 × 10-3 grams of active ingredient per hectare (g.a.i./ha) and 7.48 × 10-3 g.a.i./ha. The animals were exposed for six months. Behavioral studies were performed. Brain tissue was collected for histopathological, immunohistochemical, and oxidative stress analyses. Animals exposed by inhalation to GBH spent more time in the central area of the open field test, whereas animals exposed to a high oral concentration of GBH spent less time in the open arms in the elevated plus-maze test. Tissue hyperemia occurred only in animals exposed to high concentrations of GBH. There was a greater thickness of the cerebral cortex and an increase in the expression of the BCL-2 in the animals exposed by inhalation to GBH. There was no difference in the doses of malonaldehyde and protein carbonylation between exposed and unexposed groups. The exposure to GBH caused increased levels of anxiety, regardless of the route, high concentrations caused hyperemia and inhalation exposure cause increased cortex thickness and increased BCl-2 expression.
RESUMEN
Melanoma is the most aggressive type of skin cancer, with few therapeutic alternatives following metastasis development. In recent years, drug delivery-associated nanotechnology has shown promising targeted results with diminished adverse effects compared to conventional treatments. This study aimed to (1) examine the effects of plant-derived α-arbutin, a natural compound and (2) compare these findings with bioactively developed liposomes containing α-arbutin utilizing the B16-F10 murine melanoma cell line as a model. Liposomes were obtained through reversed-phase evaporation by applying a spray dryer to assess their stability. The following biologic assays were measured cytotoxicity/antiproliferative (MTT, Neutral Red, and dsDNA PicoGreen). In addition, the levels of melanin and purinergic enzymes were also measured. The production of reactive oxygen species (ROS) and nitric oxide (NO) was determined as a measure of oxidative state. Treatment with nano-liposome containing alpha-arbutin induced a significant 68.4% cytotoxicity, similar to the positive control, in the B16-F10 murine melanoma cell line at 72 hr. Further, arbutin and liposomes containing alpha-arbutin increased levels of ROS and nitrite formation at 72 hr at the highest concentration (100 and 300 µg/ml) of treatments. Arbutin and liposomes containing alpha-arbutin reduced melanin levels at all tested concentrations. In addition, arbutin and alpha-arbutin containing liposomes lowered nucleotides (AMP, ADP, and ATP) and nucleoside (adenosine) levels in melanoma cells. Evidence suggests that α-arbutin containing liposome can be considered as an alternative immunosuppressive agent stimulated in melanoma treatment.
Asunto(s)
Arbutina , Liposomas , Melanoma Experimental , Animales , Ratones , Arbutina/farmacología , Línea Celular Tumoral , Melanoma Experimental/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Pancreatic ßcells are the only cells that synthesize insulin to regulate blood glucose levels. Various conditions can affect the mass of pancreatic ßcells and decrease insulin levels. Diabetes mellitus is a disease characterized by insulin resistance and chronic hyperglycemia, mainly due to the loss of pancreatic ßcells caused by an increase in the rate of apoptosis. Additionally, hyperglycemia has a toxic effect on ßcells. Although the precise mechanism of glucotoxicity is not fully understood, several mechanisms have been proposed. The most prominent changes are increases in reactive oxygen species, the loss of mitochondrial membrane potential and the activation of the intrinsic pathway of apoptosis due to p53. The present review analyzed the location of p53 in the cytoplasm, mitochondria and nucleus in terms of posttranslational modifications, including phosphorylation, OGlcNAcylation and polyADPribosylation, under hyperglycemic conditions. These modifications protect p53 from degradation by the proteasome and, in turn, enable it to regulate the intrinsic pathway of apoptosis through the regulation of antiapoptotic and proapoptotic elements. Degradation of p53 occurs in the proteasome and depends on its ubiquitination by Mdm2. Understanding the mechanisms that activate the death of pancreatic ßcells will allow the proposal of treatment alternatives to prevent the decrease in pancreatic ßcells.
Asunto(s)
Apoptosis , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , AnimalesRESUMEN
Oxidative stress (OS) is a ubiquitous process for protecting against microorganisms' challenges. This review maps the most used methods for obtaining samples and analysing reactive oxygen species levels in apical periodontitis, following the PRISMA Extension for Scoping Reviews and is registered in Open Science Framework ([https://doi.org/10.17605/OSF.IO/D5U76]). A systematic search was conducted in electronic databases MEDLINE (PubMed), Embase, Scopus, Web of Science, LILACS, SciElo, OATD and DANS up to 17 July 2023. A total of 18 studies were included, with periapical tissue being the most common sample. Twenty-eight different oxidative stress markers were identified, with inducible nitric oxide synthase being the most prevalent. The use of diverse biomarkers for oxidative stress assessment lacks specificity in identifying particular OS species for evaluating apical periodontitis and potential systemic effects. Studies are necessary to compare results obtained from less invasive methods (such as saliva and crevicular fluid) with those from periapical lesion samples.
RESUMEN
The peel represents a significant portion of the araticum fruit (about 40%), which becomes waste after its consumption or processing. Previous studies have shown that the araticum peel is rich in phenolic compounds; however, little is known about the ideal conditions for recovering these compounds. Therefore, response surface methodology, using a central composite rotatable design, was employed to optimize the extraction process to maximize the total phenolic compounds (TPCs) and enhance the Trolox equivalent antioxidant capacity (TEAC) from araticum peel. The variables optimized were ethanol concentration (EC; 20-80%, v/v), extraction time (ET; 5-45 min), and solid-solvent ratio (SSR; 10-100 mg/mL). Additionally, condensed tannins, antioxidant capacity against synthetic free radicals (TEAC and FRAP) and reactive oxygen species (ROS), and the phenolic compounds profile, were evaluated. Optimum extraction conditions were 50% (v/v) ethanol concentration, 5 min of extraction time, and 10 mg/mL solid-solvent ratio. Under these conditions, experimental TPCs and TEAC values were 70.16 mg GAE/g dw and 667.22 µmol TE/g dw, respectively, comparable with predicted models (68.47 mg GAE/g dw for TPCs and 677.04 µmol TE/g dw for TEAC). A high condensed tannins content (76.49 mg CE/g dw) was also observed and 12 phenolic compounds were identified, predominantly flavonoids (97.77%), including procyanidin B2, epicatechin, and catechin as the major compounds. Moreover, a potent antioxidant activity was observed against synthetic free radicals and ROS, especially in scavenging peroxyl and hydroxyl radicals. From this study, we obtained the ideal conditions for recovering phenolic compounds from araticum peel using a simple, fast, sustainable, and effective method, offering a promising opportunity for the management of this plant byproduct.
RESUMEN
Background: Urinary tract infection is a worldwide health problem. According to the Clinical Laboratory Improvement Amendments and the European Urinalysis Guideline, urine samples should be tested within 2 h of collection. Thus, using chemical preservatives that guarantee the pre-analytical conditions is a practical tool. However, the effects of temperature and storage time as uropathogenic bacteria stressors are unclear. Methods: Gram-negative and -positive ATTC strains, E. coli, P. mirabilis, E. faecalis, and S. aureus, were used in this study. Strains in liquid media were stored at 4, 25, and 37 °C for 0, 2, 12, 24, and 48 h in tubes with and without preservatives. Then, reactive oxygen species (ROS) levels, viable but non-culturable bacteria (VBNC), and bacteria growth were analyzed. Results: A high ROS level was associated with the presence of VBNC and dead bacteria with low CFU counts, but a low ROS level increased the CFU number, depending on temperature and storage time in tubes without preservatives (boric acid, sodium borate, and formate). The BD Vacutainer™ Urine Culture & Sensitivity Preservative PLUS Plastic Tubes (C&S-PP) prevent this ROS increase, maintaining the CFU number for longer. Conclusions: C&S-PP tubes minimize the stressor effects (temperature and time storage) on uropathogenic bacteria when stored, improving the pre-analytical conditions of cultures realized by the clinical laboratory.
RESUMEN
[This corrects the article DOI: 10.3389/fimmu.2021.672520.].
RESUMEN
On an industrial scale, the residues accumulated in essential oil distilleries can be compared to the volume of residues produced in the textile industry. Although these residues are discarded, they possess molecules with diverse biological activities, including their application in phytopathogen control. In this study, the chemical profile of the residue from the hydrodistillation of Lantana camara L. leaves was determined using high-performance liquid chromatography (HPLC). Additionally, the effect of the residue on cells was assessed by determining plasma membrane integrity, levels of reactive oxygen species (ROS) production, and mitochondrial potential depolarization. The viability and cell density of Phytomonas serpens parasites significantly decreased after treatment with increasing concentrations of the lyophilized residue from accession LAC-038 (RL038). RL038 reduced cell viability by an average of 61.36%. ROS levels increased by approximately 2 × and 3 × at RL038 concentrations of 120 µg/mL and 180 µg/mL, respectively. It was observed that the same concentrations modified mitochondrial potential, reducing fluorescence by 44.6% and 46.8%, respectively. Analytical liquid chromatography of RL038 revealed the presence of 17 peaks subsequently classified as phenolic acids and flavonoids. RL038 from the hydrodistillation of Lantana camara L. leaves is a source of biologically active compounds with antiprotozoal potential.
Asunto(s)
Lantana , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Lantana/química , Destilación , Especies Reactivas de Oxígeno/metabolismo , Liofilización , Cromatografía Líquida de Alta PresiónRESUMEN
Irrigation of crops with cyanotoxin-contaminated water poses a significant risk to human health. The direct phytotoxic effects of microcystin-LR (MC-LR), one of the most toxic and prevalent microcystin variants in water bodies, can induce physiological stress and hinder crop development and production. This study investigated the impact of environmentally relevant concentrations of MC-LR (1 to 10 µg L-1) on photosynthetic parameters and antioxidant response of lettuce (Lactuca sativa L.) and arugula (Eruca sativa L.) following irrigation with contaminated water. During the 15-day experiment, lettuce and arugula were exposed to various concentrations of MC-LR, and their photosynthetic rates, stomatal conductance, leaf tissue transpiration, and intercellular CO2 concentrations were measured using an infrared gas analyzer. These results suggest that the influence of MC-LR on gas exchange in crops is concentration-dependent, with notable disruptions during exposure and recovery tendency during detoxification. Antioxidant response analysis revealed that glutathione S-transferase (GST) and superoxide dismutase (SOD) activities were upregulated during the exposure phase in the presence of MC-LR. However, GST activity decreased during the detoxification phase in both crops, although the effects of the toxin at 10 µg L-1 were still evident in arugula. The internal H2O2 concentration in the crops increased after exposure to MC-LR, showing a time- and concentration-dependent pattern, with an increase during the exposure phase (days 1-7) and a decrease during the detoxification phase (days 8-15). Irrigation of lettuce and arugula with MC-LR-contaminated water affected various aspects of the photosynthetic apparatus and antioxidant responses, which could influence the general health and productivity of exposed crops at environmentally relevant microcystin concentrations. Furthermore, investigation of additional vegetable species and long-term MC-LR exposure can be crucial for understanding the extent of contamination risk, detoxification mechanisms, and other parameters affecting these crops.
Asunto(s)
Antioxidantes , Lactuca , Microcistinas , Fotosíntesis , Lactuca/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Microcistinas/toxicidad , Toxinas Marinas , Riego AgrícolaRESUMEN
BACKGROUND: Dectin-1 is a transmembrane receptor that plays a pivotal role in recognising fungi and Mycobacterium tuberculosis (Mtb). A specific variant, DECTIN-1 rs16910526, results in a truncated receptor that disrupts membrane expression and ligand binding and is clinically associated with recurrent cutaneous mycoses. Previous research has clarified the role of Dectin-1 in boosting immune defenses against mycobacteria by enhancing reactive oxygen species (ROS) production in neutrophils (PMNs). Here, we investigated the association between the rs16910526 variant and Dectin-1 expression in PMNs, as well as intracellular ROS production in response to Mtb. Furthermore, we explored the potential link between the rs16910526 gene variant and TB outcomes in Argentina. METHODS: DNA was extracted from blood samples obtained from a cohort of 178 TB patients and healthy subjects (HS) in Argentina. PCR amplification and sequencing were performed to identify the rs16910526 variant. Flow cytometry was utilised to assess Dectin-1 expression on the PMN plasma membrane and to measure intracellular ROS levels, as indicated by the oxidation of DHR123 in response to the Mtb antigen. RESULTS: PMNs carrying the rs16910526 variant exhibited diminished Dectin-1 expression and ROS production in response to Mtb (p < 0.0001). In a caseâcontrol study, the rs16910526 variant had an allelic frequency of 0.112 in TB patients and 0.051 in HS. Notably, 10 out of 88 HS and 18 out of 62 TB patients harboured the variant (odds ratio [OR]: 2.55 [95% CI 1.1-5.9, p = 0.03]), indicating a potential association with TB disease. Furthermore, TB patients with the rs16910526 variant exhibited a delayed sputum smear conversion time (p < 0.004) and 100% positivity for acid-fast bacilli smears (p < 0.00001). CONCLUSION: Our study identified a significant association between the SNP variant rs16910526 in the DECTIN-1 gene and Dectin-1 expression in the PMN, leading to altered ROS production. The higher frequency of this variant in TB patients compared to HS suggests a possible link with susceptibility to TB disease in Argentina.
Asunto(s)
Predisposición Genética a la Enfermedad , Lectinas Tipo C , Especies Reactivas de Oxígeno , Tuberculosis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Masculino , Femenino , Adulto , Tuberculosis/genética , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Neutrófilos/metabolismo , Mycobacterium tuberculosisRESUMEN
Noradrenaline (NA) levels are altered during the first hours and several days after cortical injury. NA modulates motor functional recovery. The present study investigated whether iron-induced cortical injury modulated noradrenergic synthesis and dopamine beta-hydroxylase (DBH) activity in response to oxidative stress in the brain cortex, pons and cerebellum of the rat. Seventy-eight rats were divided into two groups: (a) the sham group, which received an intracortical injection of a vehicle solution; and (b) the injured group, which received an intracortical injection of ferrous chloride. Motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, the rats were euthanized to measure oxidative stress indicators (reactive oxygen species (ROS), reduced glutathione (GSH) and oxidized glutathione (GSSG)) and catecholamines (NA, dopamine (DA)), plus DBH mRNA and protein levels. Our results showed that iron-induced brain cortex injury increased noradrenergic synthesis and DBH activity in the brain cortex, pons and cerebellum at 3 days post-injury, predominantly on the ipsilateral side to the injury, in response to oxidative stress. A compensatory increase in contralateral noradrenergic activity was observed, but without changes in the DBH mRNA and protein levels in the cerebellum and pons. In conclusion, iron-induced cortical injury increased the noradrenergic response in the brain cortex, pons and cerebellum, particularly on the ipsilateral side, accompanied by a compensatory response on the contralateral side. The oxidative stress was countered by antioxidant activity, which favored functional recovery following motor deficits.
Asunto(s)
Lesiones Encefálicas , Dopamina beta-Hidroxilasa , Norepinefrina , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Dopamina beta-Hidroxilasa/metabolismo , Masculino , Norepinefrina/metabolismo , Norepinefrina/biosíntesis , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/inducido químicamente , Ratas Wistar , Ratas , Hierro/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Compuestos FerrososRESUMEN
OBJECTIVE: Tumor hypoxia is associated with a poorer prognosis in cancer patients and can diminish the efficacy of radiation therapy (RT). This study investigates the potential of metformin to enhance radiosensitivity in hypoxic cancer cells. METHODS: Preliminary experiments were conducted to validate the impact of hypoxia on radiation response. Reactive oxygen species (ROS) levels, cell migration, and cell death were assessed in hypoxic, radiated cells treated with metformin. Proteomic and ontological analyses were employed to identify molecular targets associated with the radiosensitizing effect of metformin. Proteomic and ontological findings were validated through patient samples and in vitro studies. RESULTS: Metformin amplified cell death, induced DNA fragmentation, decreased cell migration, and elevated ROS levels in hypoxic, radiated cells. Proteomic analyses revealed that GAPDH and TAGLN2 were identified as pivotal targets linked to the radiosensitizing effect of metformin. Oral cancer patients exhibited elevated levels of TAGLN2 and reduced levels of GAPDH. Metformin downregulated TAGLN2 and upregulated GAPDH in hypoxic, radiated cells. Additionally, metformin reduced levels of mutated p53. CONCLUSIONS: This study suggests that metformin can enhance radiosensitivity in hypoxic cells, operating through modulation of GAPDH and TAGLN2. Furthermore, metformin effectively reduces mutated p53 levels in radiated cells under hypoxic conditions.
Asunto(s)
Carcinoma de Células Escamosas , Metformina , Neoplasias de la Boca , Fármacos Sensibilizantes a Radiaciones , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Neoplasias de la Boca/radioterapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Tolerancia a Radiación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteómica , Gliceraldehído-3-Fosfato Deshidrogenasas , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante) , Hipoxia de la Célula/efectos de los fármacos , Hipoxia Tumoral/efectos de los fármacosRESUMEN
Metabolic alterations are recognized as one of the hallmarks of cancer. Among these, alterations in mitochondrial function have been associated with an enhanced production of Reactive Oxygen Species (ROS), which activate ROS-regulated cancer cell signaling pathways. Breast cancer is the main cancer-related cause of death for women globally. It is a heterogeneous disease with subtypes characterized by specific molecular features and patient outcomes. With the purpose of identifying differences in energy metabolism and the oxidative stress management system in non-tumorigenic, estrogen receptor positive (ER+) and triple negative (TN) breast cancer cells, we evaluated ROS production, protein enzyme levels and activities and profiled energy metabolism. We found differences in energetic metabolism and ROS management systems between non-tumorigenic and cancer cells and between ER+ and TN breast cancer cells. Our results indicate a dependence on glycolysis despite different glycolytic ATP levels in all cancer cell lines tested. In addition, our data show that high levels of ROS in TN cells are a result of limited antioxidant capacity in the NADPH producing and GSH systems, mitochondrial dysfunction and non-mitochondrial ROS production, making them more sensitive to GSH synthesis inhibitors. Our data suggest that metabolic and antioxidant profiling of breast cancer will provide important targets for metabolic inhibitors or antioxidant treatments for breast cancer therapy.
RESUMEN
This study investigated the impact of various Ge132 (Bis-carboxyethyl germanium sesquioxide) concentrations on frozen bovine semen. Ejaculates from three bulls were pooled and divided into six groups, each one with different Ge132 concentrations (0, 500, and 1000 µg/mL) and each group was incubated in different conditions (33°C for 30 min (D: D0, D500, and D1000), and the other was immediately cooled to 4°C (R: R0-control; R500 and R1000)). Thawed semen was evaluated for sperm characteristics by CASA and flow cytometer. Results showed better motility in the immediate cooling group without Ge132 compared with high Ge132 concentrations. Values for total motility dropped after 5 and 60 min in groups with high Ge132 levels and some control groups. Linearity increased with 1000 µg/mL Ge132, while straightness differed between moments in multiple groups. Membrane integrity was higher in a control group and certain Ge132 groups. Lower O2 - generation occurred without Ge132. After oxidative stress induction, lipid peroxidation intensity increased with arachidonic acid, but D1000 had lower peroxidation than R0. Overall, Ge132 appears to have provided protection against PLM when subjected to oxidative stress, since even at high concentrations it maintained sperm metabolism.
Asunto(s)
Antioxidantes , Criopreservación , Preservación de Semen , Motilidad Espermática , Espermatozoides , Animales , Masculino , Bovinos , Criopreservación/veterinaria , Criopreservación/métodos , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Espermatozoides/efectos de los fármacos , Antioxidantes/farmacología , Motilidad Espermática/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Crioprotectores/farmacología , Peroxidación de Lípido/efectos de los fármacos , Germanio/farmacología , Semen/efectos de los fármacos , Análisis de Semen/veterinariaRESUMEN
Prosthechea karwinskii is an endemic orchid of Mexico with cultural significance for its ornamental, food, religious, and medicinal uses. In traditional medicine, diabetic patients use the leaves of this plant to lower glucose levels. The present study evaluated the effect of P. karwinskii leaves extract on the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in a model of obese rats with insulin resistance for its nutraceutical potential to reduce insulin resistance and oxidative stress. Obesity and insulin resistance were induced with 40% sucrose in water for 20 weeks. Four groups (control rats, obese rats, obese rats administered the extract, and obese rats administered metformin) were evaluated. Extract compounds were identified by UHPLC-ESI-qTOF-MS/MS. Glucose, insulin, triglyceride, and insulin resistance indices (HOMA-IR and TyG), as well as the activity of the antioxidant enzymes, increased in rats in the obese group. Administration of P. karwinskii extract and metformin reduced glucose, insulin, triglyceride, and insulin resistance indices and antioxidant enzyme activity to values similar to those of the control group. Therefore, this study shows the nutraceutical potential of P. karwinskii extract as an ingredient in the formulation of dietary supplements or functional foods to help treat diseases whose pathophysiology is related to oxidative stress and insulin resistance.
RESUMEN
Complete insect metamorphosis requires substantial metabolic and physiological adjustments. Although oxidative stress has been implicated in metamorphosis, details on redox metabolism during larva-to-pupa and pupa-to-adult remain scarce. This study explores redox metabolism during metamorphosis of a lepidopteran (Chlosyne lacinia), focusing on core metabolism, antioxidant systems and oxidative stress. The larva-to-pupa transition was characterized by increased lactate dehydrogenase and glutathione peroxidase (GPX) activities, coupled with depletion of reduced glutathione (GSH), high disulfide-to-total-glutathione ratio (GSSG/tGSH), and increased lipid peroxidation. As metamorphosis progressed, metabolic enzyme activities, citrate synthase and glucose 6-phosphate dehydrogenase increased, indicating heightened oxidative metabolism associated with adult development. Concurrently, GSH and GPX levels returned to larval levels and GSSG/tGSH reached its most reduced state right before adult emergence. Adult emergence was marked by a further increase in oxidative metabolism, accompanied by redox imbalance and enhanced antioxidant mechanisms. These findings highlight a fluctuation in redox balance throughout metamorphosis, with periods of oxidative eustress followed by compensatory antioxidant responses. This study is the first to identify concurrent changes in metabolism, antioxidants, redox balance and oxidative stress throughout metamorphosis. Our findings extend knowledge on redox metabolism adjustments and highlight redox adaptations and oxidative stress as natural components of complete insect metamorphosis.
RESUMEN
Resolvin D5 (RvD5) is a lipid mediator that has been reported to present anti-inflammatory and pro-resolution properties. Evidence also supports its capability to enhance reactive oxygen species (ROS) production during bacterial infections, which would be detrimental in diseases driven by ROS. The biological activity of RvD5 and mechanisms against UVB irradiation skin pathology have not been investigated so far. Female hairless mice were treated intraperitoneally with RvD5 before UVB stimulus. RvD5 reduced skin edema in a dose-dependent manner as well as oxidative stress by increasing antioxidants (endogenous tissue antioxidant scavenging of cationic radical, iron reduction, catalase activity and reduced glutathione levels) and decreasing pro-oxidants (superoxide anion and lipid peroxidation). RvD5 antioxidant activity was accompanied by enhancement of Nrf2, HO-1 and NQO1 mRNA expression. RvD5 reduced the production of IL-1ß, TNF-α, TGF-ß, and IL-10. RvD5 also reduced the inflammatory cell counts, including mast cells and neutrophils/macrophages. The reduction of oxidative stress and inflammation resulted in diminished matrix metalloproteinase 9 activity, collagen degradation, epidermal thickening and sunburn cell development. Therefore, this study demonstrates, to our knowledge, the first body of evidence that RvD5 can be used to treat UVB skin pathology and unveils, at least in part, its mechanisms of action.
RESUMEN
BACKGROUND: Platelet additive solutions (PASs) improve the efficacy of stored platelets. Oxidative stress causes storage lesions and platelet functions deteriorate. Studies assessing the influence of oxidative stress on platelets stored in PASs are limited. This study compares variations in platelets in different storage solutions (SSP+, PAS-G and Tyrode's buffer). METHODS: Platelets isolated from the blood of Wistar rats were resuspended in SSP+, PAS-G and Tyrode's buffer and stored for seven days at 22 °C. The markers of platelet metabolism, function, oxidative stress, antioxidant status and viability were analyzed on Days 1, 3, 5 and 7 of storage. MAIN RESULTS: SSP+ is associated with platelet function, viability and antioxidant defenses (SOD, CAT and GSH); it decreased primary lipid peroxidation products and maintained the susceptible protein groups in reduced state. Platelet function, antioxidant defenses such as SOD and GSH improved, and lipids and thiols were protected from oxidation in PAS-G. SOD and GSH increased, and lipids and thiols were preserved in Tyrode's buffer. CONCLUSION: SSP+ and PAS-G are more effective in maintaining platelet efficacy till Day 7 compared to Tyrode's buffer. Thus, PAS-G and SSP+ are better than Tyrode's buffer in terms of platelet responses to oxidative stress during storage. This is the first comparative account on the influence of PASs (SSP+, PAS-G and Tyrode's buffer) on platelets in altering oxidative stress. It provides a comprehensive view of the differential responses of platelets in PASs.