Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 27(12): 2014-2024, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27659034

RESUMEN

Dynamic reactive ionization (DRI) utilizes a reactive molecule, HCl, which is doped into an Ar cluster projectile and activated to produce protons at the bombardment site on the cold sample surface with the presence of water. The methodology has been shown to enhance the ionization of protonated molecular ions and to reduce salt suppression in complex biomatrices. In this study, we further examine the possibility of obtaining improved quantitation with DRI during depth profiling of thin films. Using a trehalose film as a model system, we are able to define optimal DRI conditions for depth profiling. Next, the strategy is applied to a multilayer system consisting of the polymer antioxidants Irganox 1098 and 1010. These binary mixtures have demonstrated large matrix effects, making quantitative SIMS measurement not feasible. Systematic comparisons of depth profiling of this multilayer film between directly using GCIB, and under DRI conditions, show that the latter enhances protonated ions for both components by 4- to ~15-fold, resulting in uniform depth profiling in positive ion mode and almost no matrix effect in negative ion mode. The methodology offers a new strategy to tackle the matrix effect and should lead to improved quantitative measurement using SIMS. Graphical Abstract ᅟ.


Asunto(s)
Iones , Espectrometría de Masa de Ion Secundario , Polímeros , Protones , Trehalosa
2.
Anal Chim Acta ; 860: 37-42, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25682245

RESUMEN

Ionization of aliphatic and aromatic aldehydes is improved by performing simultaneous chemical derivatization using 4-aminophenol to produce charged iminium ions during paper spray ionization. Accelerated reactions occur in the microdroplets generated during the paper spray ionization event for the tested aldehydes (formaldehyde, n-pentanaldehyde, n-nonanaldehyde, n-decanaldehyde, n-dodecanaldehyde, benzaldehyde, m-anisaldehyde, and p-hydroxybenzaldehyde). Tandem mass spectrometric analysis of the iminium ions using collision-induced dissociation demonstrated that straight chain aldehydes give a characteristic fragment at m/z 122 (shown to correspond to protonated 4-(methyleneamino)phenol), while the aromatic aldehyde iminium ions fragment to give a characteristic product ion at m/z 120. These features allow straightforward identification of linear and aromatic aldehydes. Quantitative analysis of n-nonaldehyde using a benchtop mass spectrometer demonstrated a linear response over 3 orders of magnitude from 2.5 ng to 5 µg of aldehyde loaded on the filter paper emitter. The limit of detection was determined to be 2.2 ng for this aldehyde. The method had a precision of 22%, relative standard deviation. The experiment was also implemented using a portable ion trap mass spectrometer.

3.
Anal Chim Acta ; 814: 49-54, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24528843

RESUMEN

Sensitive detection of tetrabromobisphenol A (TBBPA) and its derivatives, a group of emerging toxic contaminants, is highly necessitated in environmental investigation. Herein a novel analytical strategy based on reactive extractive electrospray ionization (EESI) tandem mass spectrometry for detection of tetrabromobisphenol A bis(2-hydroxyethyl ether) (TBBPA-BHEE), tetrabromobisphenol A bis(glycidyl ether) (TBBPA-BGE), tetrabromobisphenol A bis(allylether) (TBBPA-BAE), and tetrabromobisphenol S bis(allylether) (TBBPS-BAE) in industrial waste water samples was developed. Active silver cations (Ag(+)), generated by electrospraying a silver nitrate methanol solution (10 mg L(-1)), collides the neutral TBBPA derivatives molecules in the EESI source to form [M+Ag](+) complexes of the analytes under the ambient conditions. Upon collision-induced dissociation (CID), characteristic fragments of the [M+Ag](+) complexes were identified for confident and sensitive detection of the four TBBPA derivatives. Under the optimized experimental conditions, the instrumental limits of detection (LODs) of TBBPA-BHEE, TBBPA-BGE, TBBPA-BAE and TBBPS-BAE were 0.37, 0.050, 0.76, and 4.6 µg L(-1), respectively. The linear ranges extended to 1000 µg L(-1) (R(2)≥0.9919), and the relative standard deviations (RSDs), inter-day variation and intra-day variation were less than 7.8% (n=9), 10.0% (n=5), and 14.8% (n=1 per day for 5 days) for all derivatives. TBBPA derivative manufacturing industrial waste water, river water and tap water samples were fast analyzed with the proposed method. The contents of TBBPA derivatives were various in the collected samples, with the highest 19.9±0.3 µg L(-1) of TBBPA-BAE in the waste water samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA