Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 362: 142540, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851514

RESUMEN

The rate of mass transfer of lower molecular weight hydrocarbons (naphtha) from bitumen drops in mature fine tailings of oil sand tailings ponds (OSTPs) may control their bioavailability and the associated rate of GHG production. Experiments were conducted using bitumen drops spiked with o-xylene and 1-methylnaphthalene to determine the mass transfer rate of these naphtha components from bitumen drops. The results were compared to simulations using a multi-component numerical model that accounted for transport in the drop and across the oil-water interface. The results demonstrate rate-limited mass transfer, with aqueous concentrations after 60 days of dissolution that were different than those in equilibrium with the initial drop composition (less for o-xylene and greater for 1-methylnaphthalene). The simulations suggest that mole fractions were unchanged at the center of the drop, resulting in concentration gradients out to the oil-water interface. Numerical simulations conducted using different drop sizes and bitumen viscosities also suggest the potential for persistent naphtha dissolution, where the time required to deplete 80% of the o-xylene and 1-methylnaphthalene mass from an oil drop was estimated to be on the order of months to years for mm-sized drops, and years to decades for cm-sized drops assuming instantaneous biodegradation in the aqueous phase surrounding the bitumen.


Asunto(s)
Hidrocarburos , Solventes , Hidrocarburos/química , Solventes/química , Difusión , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Yacimiento de Petróleo y Gas/química , Xilenos/química , Estanques/química , Solubilidad
2.
J Hazard Mater ; 365: 366-374, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30448549

RESUMEN

Intra-NAPL diffusion is a critical process that can influence NAPL/water mass transfer. A series of physical model experiments was performed to investigate the role of intra-NAPL diffusion on the transient dissolution of a complex multicomponent NAPL subjected to persulfate treatment. To support these observations, a diffusion-based model was developed and calibrated using the experimental data. The experimental results indicated that while persulfate was able to completely degrade dissolved phase components, mass loss after ∼410 pore volumes of persulfate flushing was less than the no-treatment system. Intra-NAPL diffusion limitations were not observed in the physical model experiments. A comparison of experimental and simulated results indicated that processes related to persulfate/NAPL interactions restricted mass transfer, and yielded multicomponent mass transfer rate coefficients that were ∼30% of those estimated from an equivalent water-flushing experiment. Simulation results showed that a combination of NAPL composition and geometry, and interphase mass transfer rate can yield intra-NAPL diffusion limitations. Remedial technologies that rely on the aggressive flushing of reagents into NAPL zones may give rise to intra-NAPL diffusion limitations, which will directly affect treatment efficiency.

3.
J Contam Hydrol ; 213: 49-61, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29776661

RESUMEN

An experimental and computational study was performed to investigate the role of multi-component intra-NAPL diffusion on NAPL-water mass transfer. Molecular weight and the NAPL component concentrations were determined to be the most important parameters affecting intra-NAPL diffusion coefficients. Four NAPLs with different viscosities but the same quantified mass were simulated. For a spherical NAPL body, a combination of NAPL properties and interphase mass transfer rate can result in internal diffusion limitations. When the main intra-NAPL diffusion coefficients are in the range of self-diffusion coefficients (10-5 to 10-6 cm2/s), dissolution is not limited by internal diffusion except for high mass transfer rate coefficients (>180 cm/day). For a complex and relatively high viscous NAPL (>50 g/(cm s)), smaller intra-NAPL diffusion coefficients (<10-8) are expected and even low mass transfer rate coefficients (~6 cm/day) can result in diffusion-limited dissolution.


Asunto(s)
Modelos Teóricos , Contaminantes Químicos del Agua/química , Alquitrán , Difusión , Industrias , Peso Molecular , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA